Joint Modeling of User Check-in Behaviors for
Point-of-Interest Recommendation

ABSTRACT

Point-of-Interest (POI) recommendation has become an important
means to help people discover attractive and interesting locations,
especially when users travel out of town. However, extreme sparsi-
ty of user-POI matrix creates a severe challenge. To cope with this
challenge, a growing line of research has exploited the temporal
effect, geographical-social influence, content effect and word-of-
mouth effect. However, current research lacks an integrated anal-
ysis of the joint effect of the above factors to deal with the issue
of data-sparsity, especially in the out-of-town recommendation s-
cenario which has been ignored by most of existing work.

In light of the above, we propose a joint probabilistic generative
model JIM to model users’ check-in activities in LBSNs, which
strategically integrates the above factors to effectively overcome
the data sparsity and improve recommendation results, especially
for out-of-town users. To demonstrate the applicability and flexi-
bility of JIM, we investigate how it supports two recommendation
scenarios in a unified way, i.e., home-town recommendation and
out-of-town recommendation. We conduct extensive experiments
to evaluate the performance of JIM on two real large-scale datasets
in terms of both recommendation effectiveness and efficiency, and
the experimental results show superiority of JIM over other com-
petitors. Besides, we study the importance of each factor in the
two recommendation scenarios, respectively, and find that exploit-
ing temporal effect is most important for the home-town recom-
mendation scenario, while the content information plays a domi-
nant role in improving the recommendation effectiveness for out-
of-town users.

1. INTRODUCTION

Recent years have witnessed the fast development of location-
based social networks (LBSNs), such as Foursquare and Facebook
Places, due to the advances in location-acquisition and wireless
communication technologies. In these LBSNs, users can post their
physical locations or geo-tagged information in the form of “check-
in”, and share their visiting experiences and tips for points of inter-
est (POI) with friends, such as restaurants, sightseeing sites. In
LBSN:g, it is crucial to utilize user check-in data to make person-
alized POI recommendation, which help users know new POIs and
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explore new regions (e.g., cities), facilitate advertisers to launch
mobile advertisements to targeted users, and make LBSNs more
attractive to users and advertisers.

Recently, POI recommendation has become a popular research
topic due to easy access of large-scale check-in records. One of the
most important problems is how to deal with a severe challenge
stemming from extreme sparsity of user-POI interaction matrix.
There are millions of POIs in LBSNs, but a user can only visit a
limited number of them. Moreover, the observation of travel locali-
ty exacerbates this problem. The observation of travel locality [16]
made on LBSNss shows that most of users’ check-ins are left in their
living regions (e.g., home cities) due to the distance constraint. An
investigation shows that the check-in records generated by users in
their non-home cities are very scarce and only take up 0.47% of
the check-in records left in their home cities, which aggravates the
data sparsity problem with POI recommendation for out-of-town
users (e.g., if we want to recommend POlIs located at Los Angeles
to people from New York City) [11, 31].

The most popular approach in recommender systems is that of
collaborative filtering [1]. There exists a considerable body of re-
search [16, 28, 18, 11, 12] which deposited people’s check-in his-
tory into user-POI matrix where each row corresponds to a user’s
POI-visiting history and each column denotes a POI. A collabora-
tive filtering-based method is then employed by [16, 28, 11] to infer
the user’s preference regarding each unvisited POIL. Based on the
core idea of collaborative filtering, similar users of the target user
(i.e., those who exhibit similar POI visiting behaviors) are chosen
to provide clues for making recommendation. Due to travel locali-
ty, most of these similar users are more likely to live in the same re-
gion with the target user than other regions. As a recommendation
is made by considering POIs visited by the similar users, most of
the recommended POIs would be located in the target user’s home
town. So, these CF-based methods cannot be directly applied to the
POI recommendation for out-of-town users [11, 31].

Moreover, unlike the traditional GPS trajectories [37, 36], the
time-ordered check-in records of a user are low-sample-rate where
the details of movement information are lost. The spatial gap be-
tween any two consecutive check-ins is typically in the scale of
kilometers while the spatial gap between consecutively logged G-
PS points in the GPS trajectories is typically 5-10 meters. Besides,
the time interval between consecutive check-ins is much larger than
that in the GPS trajectories. Therefore, existing sequential pattern
mining methods such as Markov-chain models on GPS trajectories
cannot apply to the sparse users’ check-in data in LBSNs.

To deal with the issue of data sparsity, especially for out-of-town
recommendation scenario, we explore the following factors which
can influence the decision-making process of a user choosing a POI
in a joint manner.

e Geographical Influence. Many recent studies show that peo-
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ple tend to explore nearby POIs of a POI that they have vis-
ited before [29]. So, POIs visited by users often form spatial
clusters, i.e., people tend to check in around several centers
(e.g., “home” and “office”) [6, 18].

e Temporal Effect. As observed in [32, 12], human mobility
exhibits strong temporal cyclic patterns in terms of hour of
the day or day of the week. For example, a user is more likely
to go to a restaurant rather than a bar at lunch time, and is
more likely to go to a bar rather than an office at midnight.

e Content Effect. Content information on LBSNs related to a
user’s check-in activity provides a unique opportunity to in-
fer personal interests. For example, by observing a POI’s de-
scription as “vegetarian restaurant”, we infer that users who
check-in at this POI might be interested in vegetarian diet.

e Word-of-Mouth Effect. The region-level popularity of POIs
also affects user visiting behaviors [31, 20]. In fact, the prob-
ability of a user visiting a POl is largely affected by the local
word-of-mouth about the POI, especially when users travel
in unfamiliar regions.

While there are some studies that exploit one of the above fac-
tors to improve POI recommendation effectiveness, they lack an
integrated analysis of their joint effect to deal with the issue of da-
ta sparsity, especially in the out-of-town recommendation scenario.
Specifically, most prior work of POI recommendation focuses on
exploiting users’ mobility patterns by investigating geographical
influence [29, 6, 18], temporal effects [32, 12], and social influ-
ence [11, 29, 10], but they ignore the potential effect of content in-
formation of checked-in POI, thus missing the opportunity to trans-
fer user interest inferred at home town to other out-of-town regions
by the medium of POI contents. Although some recent work [31,
13, 21] exploited the content information of POIs to deal with the
issue of data sparsity, they do not consider the temporal effect and
geographical influence. In light of this, we propose a Joint prob-
abilistic generative model JIM to model users’ check-in behaviors
in LBSNs, which strategically integrates the above factors to effec-
tively overcome the issue of data sparsity, especially in the out-of-
town recommendation scenario. There are two components in JIM:
Time-aware User Interest Component (TIC) and Popularity-aware
User Mobility Component (PMC).

TIC aims to exploit both the contents of POIs and their temporal
effect. Specifically, we infer individual user’s interest according to
the contents of his/her checked-in POIs. Thus, TIC alleviates the
data sparsity, especially for out-of-town recommendation users, as
the contents play the role of medium which can transfer users’ in-
terests inferred at their home regions to out-of-town regions where
they are traveling. Unfortunately, based on recent analysis of LB-
SNs data [27], about 30% of all POIs are lacking any meaningful
textual descriptions. To address this problem, we exploit the associ-
ation between the contents of checked-in POIs and the checking-in
time by mining the co-occurrence patterns of user activity contents
and the activity time, since the check-in time provides important
clues about the content of POIs.

PMC is developed to exploit the geographical influence and word-
of-mouth effect. Different from user online behaviors in the virtual
world, user activities in the physical world are limited by travel dis-
tance. In this component, we first infer each user’s activity range
according to the location distribution of his/her historical visited
POIs or his/her current location. Specifically, we divide the geo-
graphical space into several regions and compute the probability
of individual user visiting each region. Then, we infer the proba-
bility of each region generating a POI according to both the pub-
lic’s check-in behaviors at that region and the distance between the

POI and the center of that region, i.e., considering both the region-
level popularity of the POI and the geographical influence. By in-
tegrating the region-level word-of-mouth effect, i.e., the wisdom
of crowds, JIM model can solve the problem of user interest drift
across geographical regions which indicates that user interests in-
ferred at one region (e.g., home town) cannot always be applied to
recommendation at another region. For example, a user w never
goes gambling when he lives in Beijing, China, but when he travels
in Macao or Las Vegas he is most likely to visit casinos.

To demonstrate the applicability of JIM, we investigate how it
supports two recommendation scenarios in a unified way: 1) home-
town recommendation that assumes that the target user is located
in his/her home town, i.e., to meet users’ information need in their
daily life, and 2) out-of-town recommendation that aims to meet
users’ information need when they travel out of town, especially
in unfamiliar regions. It is worth mentioning that both of the rec-
ommendation scenarios should be personalized, time-aware [32]
and location-based [11], i.e., to recommend different ranked lists
of POIs for the same target user at different time and locations.

We conduct extensive experiments to evaluate the performance
of our JIM model on two real large-scale datasets in terms of rec-
ommendation effectiveness and efficiency, and the results show su-
periority of JIM model over other competitors. Besides, we study
the contribution of each factor to improve the recommendation re-
sults in the two respective scenarios under a unified recommenda-
tion framework, and find that the content effect plays a dominant
role to alleviate the data sparsity in the out-of-town recommenda-
tion scenario, while the temporal effect is most important to im-
prove home-town recommendation. To the best of our knowledge,
this is the first work to compare the effect of each factor in the two
different recommendation scenarios.

The remainder of the paper is organized as follows. Section 2
details JIM model. We present how to effectively and efficiently
deploy JIM model to the POI recommendation in Section 3. We
report the experimental results in Section 4. Section 5 reviews the
related work and we conclude the paper in Section 6.

2. JOINT MODELING OF USER CHECK-
IN BEHAVIORS

In this section, we first formulate the problem definition, and
then present our proposed JIM model.

2.1 Preliminary

For the ease of presentation, we define the key data structures
and notations used in this paper.

Name: Darling Harbour

Location: Longitude: 151.200, Latitude: -33.877

Categories: Harbor, Marina, Park, and Plaza

Tags: scenic views, harbourside, fireworks, cafés
sunsets, harbors, museums, playground

Total check-ins: 27,692

Table 1: A POI and its associated information

Definition 1. (POI) A POI is defined as a uniquely identified
specific site (e.g., a restaurant or a cinema). In our model, a POI
has three attributes: identifier, location and contents. We use v to
represent a POI identifier and [, to denote its corresponding geo-
graphical attribute in terms of longitude and latitude coordinates. It
should be noted that many different POIs can share the same geo-
graphical coordinate. Besides, there may be textual semantic infor-
mation associated with a POI, such as the category and tag words.
We use the notation W, to denote the set of words describing POIL
v. Table 1 shows an example.
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Variable Interpretation
9 the activity range of user u, expressed by
a multinomial distribution over a set of regions
P the interests of user u, expressed by
w a multinomial distribution over a set of topics
a multinomial distribution over words
b= specific to topic z
a beta distribution over time
Y= specific to topic z
the region-level popularity distribution of POIs
#r specific to region r
W the mean location of region r
p the location covariance of region
Dirichlet priors to multinomial
v BT distributions Y., O, ¢~ and ¢, respectively

Table 2: Notations of parameters

Definition 2. (User Home Location) Following the recent work
of [17], given a user u, we define the user’s home location as the
place where the user lives, denoted as /.

Note that, we assume a user’s home location is “permanent” in
our problem. In other words, a home location is a static location
instead of a real-time location that is “temporally” related to him
(e.g., the places where he/she is traveling). Due to privacy, user
home locations are not always available. For a user whose home
location is not explicitly given, we adopt the method developed
by [23] which discretizes the world into 25km by 25km cells and
defines the home location as the average position of check-ins in
the cell with most of his/her check-ins.

Definition 3. (Check-in Activity) A user check-in activity is rep-
resented by a five tuple (u, vV, Ly, Wy, t) that means user u visits
POI v at time ¢.

Definition 4. (User Profile) For each user u, we create a user
profile D,,, which is a set of check-in activities associated with
u. The dataset D used in our model consists of user profiles, i.e.,
D={D,:ueU}

Definition 5. (Topic) Given a collection of words W, a topic z
is defined as a multinomial distribution over W, i.e., ¢. = {¢2,w :
w € W} where each component ¢. ., denotes the probability
of topic z generating word w. Generally, a topic is a semantic-
coherent soft cluster of words.

Given a dataset D as the union of a collection of user profiles, we
aim to provide POI recommendation for both home-town and out-
of-town users. We formulate our problem that takes into account
both of the two scenarios in a unified fashion as follows.

PROBLEM 1. (POI Recommendation) Given a check-in activ-
ity dataset D and a querying user uq with his/her current location
lq and time tq (that is, the query is ¢ = (uq, tq, lg)), our goal is
to recommend a list of POIs that uq would be interested in. Given
a distance threshold d, the problem becomes an out-of-town rec-
ommendation if the distance between the target user’s current lo-
cation and his/her home location (that is, |lq — l.|) is greater than
d. Otherwise, the problem is a home-town recommendation.

Following related studies [11, 10], we set d = 100km in our
work, since a distance around 100km is the typical radius of human
“reach” — it takes about 1 to 2 hours to drive such a distance.

2.2 Model Description

To model user check-in behaviors in LBSNs, we propose a join-
t probabilistic generative model JIM to take into account various
factors including geographical influences, content effect, temporal
effect and word-of-mouth effect. Figure 1 shows the graphical rep-
resentation of JIM. We first introduce the notations of our model

and list them in Table 2. Figure 1 shows the graphical representa-
tion of JIM where N, K and R denote the number of users, top-
ics and regions, respectively. Our input data, i.e., users’ check-in
records, are modeled as observed random variables, shown as shad-
ed circles in the figure. The topic and region indexes of check-in
records are considered as latent random variables, which are de-
noted as z and r. Specifically, JIM consists of two components:
Time-aware User Interest Component and Popularity-aware User
Mobility Component, which will be described in the following.

Time-Aware User Interest Modeling. Intuitively, a user choos-
es a POI at a given time by matching his/her personal interests with
the contents of that POIL. Inspired by the early work about user in-
terest modeling [21, 31, 14], JIM adopts latent semantic topics to
characterize users’ interests to overcome the data sparsity. Specif-
ically, we infer individual user’s interest distribution over a set of
topics according to the contents (e.g., tags and categories) of his/her
checked-in POIs, denoted as 6,, which is a user-dependent multi-
nomial distribution.

Unfortunately, based on the recent analysis of LBSNs data in
[27], about 30% of all POIs are lacking any meaningful textu-
al information. To address this problem, we exploit the associ-
ation between the contents of checked-in POIs and the check-in
time by mining the co-occurrence patterns of user activity contents
and the activity time, since the check-in time provides importan-
t clues about the content of POIs. Intuitively, the POIs which are
checked-in at the same/similar time by most users are more likely
to have same/similar functions and categories. So the introduction
of check-in time is helpful to infer the topics of POlIs, especially
whose contents are not available. Technically, each topic z in our
JIM model is not only associated with a multinomial distribution
over words ¢, but also with a continuous distribution over time
1),. This design enables ¢, and 1, to be mutually influenced and
enhanced during the topic discovery process by associating them.
Another benefit of this design is that the inferred personal interests
are not only semantic-aware, but also time-aware.

To integrate the check-in time information to the topic discovery
process, the method of time division is essential. Instead of adopt-
ing existing discretization methods to split the time into hourly-
based slots [12, 32], we treat time ¢ as continuous real value and
normalize the time during a day to a range from O to 1, consider-
ing that 1) time is intrinsically continuous; 2) discretization of time
always begs the question of selecting the proper time interval, and
the interval is invariable too small for some periods and too large
for others. Following the literature [26], we employ the Beta distri-
bution to describe the time distribution of topic z which can behave
versatile shape. Double-bounded distributions are appropriate be-
cause the training data are bounded in time (i.e., a day).

In the standard topic models [4, 25], a document (i.e., a bag of
words) contains a mixture of topics, represented by a topic distri-
bution, and each word has a hidden topic label. While this is a rea-
sonable assumption for long documents, for short document W, it
is most likely to be about a single topic since most of POIs belong
to a single category. We therefore assign a single topic with the
document W,,. Similar idea of assigning a single topic to a twitter
post has been used before [35].

Popularity-Aware User Mobility Modeling. Different from us-
er online behaviors in the virtual world, users’ activities in the phys-
ical world are limited by travel distance. So, it is also important to
capture users’ spatial mobility patterns according to the location
distributions of their checked-in POIs. In this component, we clus-
ter the geographical locations into R regions. The spatial cluster-
ing phenomenon indicates that users are most likely to check-in a
number of POIs and these POIs are usually limited to some geo-
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Figure 1: The Graphical Representation of JIM

graphical regions [29]. To model a user’s propensity for a POI, we
first need to choose the region at which the checked-in POI is lo-
cated, instead of directly generating the geographical coordinate of
the POI. We apply a multinomial distribution 1., to model user u’s
mobility over the R latent regions. Following the literatures [20,
19], we assume a Gaussian distribution for each region r, and the
location for POI v is characterized by I, ~ N (pr, 2.), as follows:

1 —(ly — IJ'T')TE:I(IU )
exp (
21/ | | 2

where p, and 3, denote the mean vector and covariance matrix.
Since the user trajectories derived from user check-in data are low-
sampling-rate [9], and most detailed moving information are lost,
the explicit location of a user before visiting v is unknown. Thus,
we use the region r to represent the user’s activity area at that time.

Popularity can also affect the users’ check-in behaviors to a great
extent, especially the out-of-town users. When people travel out of
town, especially in a new region, their decision-makings are sig-
nificantly affected by the word-of-mouth opinions, which can be
represented as the popularity of the POIs. We use the multinomial
distribution ¢, to model the normalized popularity of POIs in a
region level, i.e., ¢, denotes the normalized popularity of POI v
in region 7. On the one hand, the local popular POIs represent the
local attractions, to some extent. On the other hand, the POIs with
high popularity score potentially provide better user experiences.
That is why two POIs with the same semantic words can be rated
differently in the same region.

Note that, to avoid overfitting, we place a Dirichlet prior [4, 25]
over the multinomial distribution 8., as parameterized by a:

F(Zz a) a—1
P(Oy|a) = W : 0.z 2)

where T'(+) is the gamma function. Similarly, priors over ¥+, ¢»
and ¢, are imposed with parameters -y, (3, and 7, respectively. We
formally describe the probabilistic generative process of the JIM
model in Algorithm 1. Finally, we obtain the joint distribution of
the observed and hidden variables as in Equation 3.

2.3 Model Inference

Our goal is to learn parameters that maximize the marginal log-
likelihood of the observed random variables v, I,,, W,, and t. How-
ever, the exact marginalization is intractable due to the coupling

P(ly|pr, Er) = ) (D)

Algorithm 1: Probabilistic generative process in JIM

for each topic z do
| Draw ¢, ~ Dirichlet(-|B);
end
for each region r do
| Draw ¢, ~ Dirichlet(-|T);

end

for each user u do
Draw 6,, ~ Dirichlet(-|a);
Draw ¥+, ~ Dirichlet(-|v);

end

for each D, in D do

for each check-in (u, v, l,, Wy, t) € D,, do
Draw a topic index z ~ Multi(60);
Draw a time t ~ Beta(¢»,1,v2,2);
for each token w € W, do

| Draw w ~ Multi(¢z);

end
Draw a region index r ~ Multi(9.);
Draw a POl index v ~ Multi(p,.);
Draw a location l, ~ N (pr, £p);

end

end

between hidden variables. Therefore, we follow the studies [31,
24] to use Markov Chain Monte Carlo method (MCMC) to max-
imize the complete data likelihood in Equation 3. Note that we
adopt conjugate prior (Dirichlet) for multinomial distributions, and
thus we can easily integrate out 1, 8, ¢ and . Due to the space
limitation, we omit the derivation details. In this way we facili-
tate the sampling — that is we need not sample 1, 8, ¢ and ¢ at
all. For simplicity and speed, we estimate these Beta distribution
parameters 1. and Gaussian distribution parameters (p», 3r) by
the method of moments after per iteration of Gibbs sampling. As
for the hyperparameters «, 3, v and 7, for simplicity, we take a fix
value, i.e., o = 50/K, v = 50/R and 8 = 7 = 0.01, following
the studies [31, 24]. Our algorithm is easily extended to allow these
hyperparameters to be sampled and inferred, but this extension can
slow down the convergence of the Markov chain.

In the Gibbs sampling procedure, we need to obtain the posterior
probability of sampling latent topic z and latent region r for each
user check-in record (u, v, l,, Wy, t). First, we need to com-
pute the conditional probability P(z|z-u,v, T, V,ly, W, t,u, ),
where z -, represents topic assignments for all check-in records
except the current one. We begin with the joint probability distribu-
tion of the latent and observed variables shown in Equation 3, and
using the Bayes chain rule, we can obtain the conditional probabil-
ity conveniently as:

—u,v

P(z|z—uw, 70,1y, Wy, t,u, ) %
Zz' (nu,z" + a)
(1 —t)¥z1—1g¥z2-1 now +p @

Bt 022)  yeib, S (0, + )
where n,, ., is the number of times that latent topic z has been sam-
pled from the interest distribution of user u, and n ., is the number
of times that word w is generated from topic z; the number n~*""
with superscript —u, v denotes a quantity excluding the current in-
stance. Itis worth mentioning that our JIM can handle POIs without
any content information. In that case, we will remove the last part
related with W, in the above sampling formula.

Then, we sample region 7 according to the following posterior

P(v,ly, Wy, t, 2z, 7|, 8,7, T, ¢, u, )

=P(z|a)P(r|v)P(Wy|z, B) P(v|r, T) P(t|z, ¥) P(ly|7, u, X)

3)

= [ PI0)P©I2)0 [ Pro)P@Rad [ PW,lz, @) P@15)d6 [ Polr @) PelndeP(tz, ) Palr.u )
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probability:
P( ""ﬁu vy 2,0, by, Way, t, u, )

—u,v

Ny,r + 7Y n:%’v +7 )
o ~ P(lo|pr, )
Zr’( uma/’“ + ’y) Zv/ (nr’zf’ + 7—) v|Hr, &

where n,,, is the number of times that region 7 has been sampled
from the spatial activity distribution of user u, and n ,, is the num-
ber of times that POI v is generated by region r.

After each iteration, we employ the method of moments to up-
date the Beta and Gaussian distribution parameters (i.e., p, 3 and
1)) according to the assigned latent variables 7 and z for simplicity
and speed. Specifically, parameters p, and 3, are updated as in
Equations (6) and (7).

B, = ly ©)
0= Py
1
Sr=D(r)= ——— > (lo— pr)(lo — pr)T @)
|Sr| -1 veS,

where S, denotes the set of POIs assigned with latent region 7. The
Beta distribution parameters 1 are updated as follows:

t.(1—t,
7/121 7tz(%_1) (8)

z

Yen=(1 —ﬁ)(tz“si;t” —1) ©

z
where 7. and s? indicate the sample mean and the sample variance
of the timestamps assigned with topic z, respectively.

Inference Framework. After a sufficient number of sampling
iterations, the approximated posteriors can be used to estimate pa-
rameters by examining the counts of z and = assignments to check-
in records. The detailed inference framework is shown in Algorith-
m 2. We first initialize the latent geographical regions by a K-
means algorithm (Lines 3-4), and then randomly initialize the topic
assignments for the check-in records (Lines 5-9). Afterwards, in
each iteration, Equations (4, 5) are utilized to update the region
and topic assignments for each check-in record (u, v, l,, Wy, t)
(Lines 12-17). After each iteration, we update the Gaussian dis-
tribution and Beta distribution parameters (Lines 18-19). The it-
eration is repeated until convergence (Lines 11-24). In addition, a
burn-in process is introduced in the first several hundreds of itera-
tions to remove unreliable sampling results (Lines 20-23). We also
introduce the sample lag (i.e., the interval between samples after
burn-in) to sample only periodically thereafter to avoid correlation-
s between samples.

Time Complexity. We analyze the time complexity of the above
inference framework as follows. Suppose the process needs [ iter-
ations to reach convergence. In each iteration, it requires to go
through all user check-in records. For each check-in record, it
first requires O(K) operations to compute the posterior distribu-
tion for sampling latent topic, and then needs O(R) operations to
compute the posterior distribution for sampling latent region. Thus,
the whole time complexity is O(I (K +R) >~ |Du|). To speed up
the model training, we parallelize the Gibbs sampling procedure
based on the GraphLab framework !, which is scalable to large-
scale check-in datasets.

3. POI RECOMMENDATION USING JIM

Once we have learnt the model parameter set ¥ = {é, 1§, q?), @,
P, [, 2}, given a querying user u, with the querying time ¢, and
location 4, i.e., ¢ = (uq, tq, lq), We compute a probability of user
uq checking-in each POI v, and then select top-k POIs with highest

"http://www.select.cs.cmu.edu/code/graphlab/

Algorithm 2: Inference Framework of JIM Model

Input: user check-in collection D, number of iteration I, number of
burnin I3, sample lag I;, Pnors @, B, T
Output: estimated parameters 6 (;b P, w, [, and by

Create temporary variables Bs“m, PIUTT | HSUTTL | (pSUTTL qfySUTTE
W™ and 325%™ and initialize them with zero;

Create temporary variables 1), p and 3;

Initialize the clustering of geographical locations using K-Means
method.

4 Update p and 3 according to Equations (6,7), respectively;

5 for each D, € D do

6 for each check-in record (u, v, ly, Wy, t) € Dy, do

7

8

—

w N

‘ Assign topic randomly;
end

9 end
10 Initialize variable count with zero;
11 for iteration = 1to I do
12 for each D, € D do

13 for each check-in record (u, v, l,, Wy, t) € Dy, do
14 Update topic assignment using Equation (4);
15 Update region assignment using Equation (5);
16 end
17 end
18 Update p and X according to Equations (6, 7), respectively;
19 Update v/ according to Equations (8, 9);
20 if (iteration > Ip) and (iteration mod Is == 0) then
21 count = count + 1;
22 Update 195“7", gsum, ¢sum’ Lpsum’ ,lpsum’ I_Ls'u,m and
338U as follows:
o Nu,r +7
Y5y — ) (10)
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! > (M +7)
P = e (14)
st = 15)
ST =3, (16)
23 end
24 end
5 gsum s gsum o gsum
25 Return model parameters 6 = 7, 9 = count” L= o

sum pSu™ sum ssum
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P = rount ¥ = “count P = “count> A0d 2= (ounf >

probabilities for the target user. Specifically, the probability of user
uq4 checking-in POI v, given his/her associated time ¢, and location
l4 as well as the learnt model parameters . is computed according
to Equation 17. .
Pyl Wolug, tas L, &) = P(v,ly, Wy, tqlug, lq, ¥) A
Do PV Ly s W tqlug, lg, ®) (17)

o P(v, Ly, W, tglug, lq, ®)

where P(v, Ly, W, tq|ug, lq, @) is calculated as follows:
P(v,ly, Wy, tqlug, lg, ¥)
=Y P(rllg, ®)P(v, Ly, Wy, tqlug,r, &)
r

where P(r|l,, ¥) denotes the probability of user u lying in region
r given his/her current location /4, and it is computed as in Equa-
tion 19 according to Bayes rule, in which the prior probability of
latent region r can be estimated using Equation 20, as follows.

(18)

= P(r)P(lg|r, ¥) . g
P(r|ly, ¥) = = PP, B) x P(r)P(lqr, ®) (19

Nutr
ZP rlu) P(u) = ZZ (N/iﬁ)ﬂu/,r (20)




where N,, denotes the number of check-ins generated by user u. In
order to avoid overfilling, we introduce the Dirichlet prior parame-
ter # to play the role of pseudocount. P(v,ly, W, to|ug, r, ¥) is
defined as in Equation 21 where we adopt geometric mean for the
probability of topic z generating word set W, i.e., P(W, |z, ¥) =
[Toew, P(w|z, ), considering that the number of words associ-
ated with different POIs may be different.

Based on Equations (18-21), the original Equation 17 can be re-
formulated as in Equation 22.

3.1 Efficient Online Recommendation

Our proposed recommendation strategy is to first train JIM of-
fline and obtain a knowledge model containing necessary insights
about users’ interests, mobility patterns and POIs’ properties, and
then use the knowledge model to retrieve top-k POIs for the real-
time query ¢q. To speed up the process of online recommendation,
we propose a ranking framework based on Equation 22, as follows:

a=(r,2)

W(g,a) = Ou, =1, P(g|fir, Er) 24)

R o\ W
F(v,a) = P(T)P(lv‘ﬂrvz'r’)@r,v< H ¢z,w) (25)

weW,

where S(g,v) represents the ranking score of POI v for query
g. Each region-topic pair (r,z) can be seen as an attribute (i.e.,
a = (r,z)), and W (g, a) represents the weight of query ¢ on at-
tribute a, and F'(v, a) represents the score of POI v with respect
to attribute a. This ranking framework separates the offline scoring
computation from the online scoring computation. Since F'(v, a) is
independent of queries, it is computed offline. Although the query
weight W (q, ) is computed online, 1ts main time-consuming com-
ponents (i.e., U)z ty» c9uq7z and (ur, )) are also computed offline,
the online computation is just a simple combination process. This
design enables maximum precomputation for the problem consid-
ered, and in turn minimizes the query time. At query time, the
offline scores F'(v, a) only need to be aggregated over K x R at-
tributes by a simple weighted sum function.

The straightforward method of generating the top-k POIs need-
s to compute the ranking scores for all POIs according to Equa-
tion (23) and select top-k ones with highest ranking scores, which
is, however, computationally inefficient, especially when the num-
ber of POIs or the number of POI attributes becomes large. To
improve the online recommendation efficiency, the proposed JIM
model can be seamlessly integrated with the TA-based query pro-

cessing technique developed in [31], because W (g, a) is non-negative,

and thus the proposed ranking function in Equation 23 is a mono-
tonic linear weighting function given a query g. The technology
has the nice property of correctly finding top-k results by examin-
ing the minimum number of POIs without scanning all ones, which
enables the JIM model scalable to large-scale datasets.

4. EXPERIMENTS

In this section, we first describe the settings of experiments and
then demonstrate the experimental results.

4.1 Experimental Settings
4.1.1 Datasets

Our experiments are conducted on two real datasets: Foursquare
and Twitter. Their basic statistics are shown in Table 3.

Foursquare Twitter
# of users 4,163 114,508
# of POIs 21,142 62,462
# of check-ins 483,813 1,434,668
time span Dec 2009-Jul 2013 Sep 2010-Jan 2011

Table 3: Basic statistics of Foursquare and Twitter datasets

Foursquare. This dataset contains the check-in history of 4,163
users who live in the California, USA. For each user, it contains
his/her social networks, check-in POI IDs, location of each check-
in POI in terms of latitude and longitude, check-in time and the
contents of each check-in POI. Each check-in is stored as user-ID,
POI-ID, POI-location, POI-content, check-in time. Each record in
social networks is stored as user-ID, friend-ID and the total number
of social relationship is 32,512. This dataset is publicly available *.

Twitter. This dataset is based on the publicly available twitter
dataset [8]. Twitter supports third-party location sharing services
like Foursquare and Gowalla (where users of these services opt-
in to share their check-ins on Twitter). But the original dataset
does not contain the category and tag information about each POI.
So, we crawled the content information associated with each POI
from Foursquare with the help of its publicly available API . Each
check-in record has the same format with the above Foursquare
dataset. But, this dataset does not contain user social network.

4.1.2 Comparative Approaches

We first compare our JIM model with the following four com-
petitor methods which represent state-of-the-art POI recommenda-
tion techniques.

SVDFeature. SVDFeature [5] is a machine learning toolkit de-
signed to solve the feature-based matrix factorization. This toolkit
is very powerful and Chen et. al [5] adopted it to win KDD Cups
for two consecutive years (2011 and 2012). Based on this toolkit,
we build a factorization model incorporating more side information
beyond the user-POI matrix, including POI content, POI geograph-
ical location, temporal dynamics (i.e., check-in time) and popular-
ity of POI, to fairly compare with our model JIM. The limitation
of SVDFeature is that it cannot deal with continuous time and lo-
cation, thus we adopt the discretization methods developed in [32,
30] to segment them into bins and grid squares, respectively.

Time-Aware Collaborative Filtering (TACF). TACF is the state-
of-the-art time-aware POI recommendation method [32], which is

Zhttp://www.public.asu.edu/ hgaol6/dataset.html
3https://developer.foursquare.com/
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a collaborative filtering model integrating temporal effect. Specif-
ically, TACF splits time into hour-based slots and models the tem-
poral preference of a given user in a time slot according to his/her
visited POIs in that time slot. Given a querying user u at a specific
time ¢, TACF first finds a group of users sharing similar temporal
preferences with w.

UPS-CF. UPS-CF, proposed in [11], is a collaborative recom-
mendation framework which is especially designed for out-of-town
users. This framework integrates user-based collaborative filtering
and social-based collaborative filtering, i.e., to recommend POIs
to a target user according to the check-in records of both his/her
friends and similar users with him/her.

LCA-LDA.LCA-LDA is a location-content-aware recommender
model which is developed to support POI recommendation for user-
s traveling in new cities [31]. This model takes into account both
personal interests and local preferences of each city by exploiting
both POI co-visiting patterns and contents of POIs. Compared with
JIM, it ignores the temporal effect and geographical influence.

To further validate the benefits brought by exploiting the tempo-
ral effect, content effect, word-of-mouth effect and geographical in-
fluence, respectively, we design four baselines. JIM-S1 is the first
simplified version of the JIM model where we remove the check-in
time information, and the latent variable z only generates the word
set W, for each check-in record. JIM-S2 is the second simplified
version of the JIM model where we remove the content informa-
tion of POIs, and the latent variable z only generates the check-in
time. As the third simplified version of JIM, JIM-S3 means our
model without considering the word-of-mouth effect. So, the latent
variable r only generates the location of POI v. As the last simpli-
fied version of JIM, JIM-S4 means our model without considering
the geographical influence. So, the latent variable r only generates
the ID of POI v, and the popularity-aware user mobility component
degenerates into a model-based collaborative filtering method.

4.1.3 Evaluation methods

Since our JIM is designed for both home-town and out-of-town
recommendation, we evaluate the recommendation effectiveness of
our model under the two scenarios respectively. Given a user profile
in terms of a collection of user activities, we divide the user’s activ-
ities into a training set and a test set. For the scenario of home-town
recommendation, we randomly select 20% of the activity records
occurring at the user’s home town as test set, and use the remaining
activity records as the training set. Similarly, for the scenario of
out-of-town recommendation, we randomly select 20% of the ac-
tivity records generated by the user when he/she travels out of town
as the test set, and use the remaining activity records as training
set. To decide whether an activity record occurs at home town or
out of town, we measure the distance between the user’s home lo-
cation and the POI (i.e., |l — lo|). If the distance is greater than
the threshold d, then we assume the activity occurs when the user
is out-of-town. Besides, to simulate a more real POI recommenda-
tion scenario, we have to choose a location coordinate as the target
user’s current standing position before visiting v. Specifically, for
each test case (u, v, l,, Wy, t), we use a Gaussian function to
generate a coordinate [ within the circle of radius d centered at [,,
to represent the current standing point of user w. Thus, a query
q = (u, 1, t) is formed for the test case.

According to the above dividing strategies, we split the user ac-
tivity dataset D into the training set D¢rqir and the test set Diegy.
To evaluate the recommendation methods, we adopt the evaluation
methodology and measurement Accuracy @k proposed in [11, 31,
22]. Specifically, for each activity record (u, v, Iy, W, t) in
D:est as well as its associated query ¢: First, we compute the rank-
ing score for POI v and all other POIs which are within the circle

of radius d centered at [, and unvisited by w previously. Second,
we form a ranked list by ordering all of these POIs according to
their ranking scores. Let p denote the position of the POI v within
this list. The best result corresponds to the case where v precedes
all the unvisited POIs (that is, p = 1). Third, we form a top-k rec-
ommendation list by picking the & top ranked POIs from the list. If
p < k, we have a hit (i.e., the ground truth v is recommended to
the user). Otherwise, we have a miss.

The computation of Accuracy @k proceeds as follows. We de-
fine hit@F for a single test case as either the value 1, if the ground
truth POI v appears in the top-k results, or the value 0, if otherwise.
The overall Accuracy @k is defined by averaging over all test cases:

#hitQk

‘Dtestl
where #hit@QFk denotes the number of hits in the test set, and | D¢e.st |
is the number of all test cases. The results have been validated by
means of a standard 5-fold cross validation.

Accuracy@Qk =

4.2 Recommendation Effectiveness

In this part, we present the overall performance of the recom-
mendation methods with well-tuned parameters. Figure 2 reports
the performance of the recommendation methods on the Foursquare
dataset. From the figure, we observe that the accuracy values grad-
vally become higher with the increase of k. We show only the
performance where k is set to 1, 5, 10, 15, 20, as a greater value of
k is usually ignored for a typical top-k recommendation task.

It is apparent that the models have significant performance dis-
parity in terms of top-k accuracy, especially in the out-of-town rec-
ommendation scenario. Figure 2(a) presents the recommendation
accuracy in the scenario of out-of-town recommendation where the
accuracy of JIM is about 0.12 when k = 10, and 0.15 when k& = 20
(i.e., the model has a probability of 12% of placing an appealing
POI in the top-10 and 15% of placing it in the top-20). Clear-
ly, our proposed JIM model outperforms other competitor model-
s significantly, and the advantages of JIM over other competitor
methods are very obvious in this scenario. Several observation-
s are made from the results: 1) TACF and UPS-CF drop behind
JIM, SVDFeature and LCA-LDA, showing the advantages of latent
class models incorporating the contents of checked-in POIs. This
is because users have few check-in activity records in out-of-town
regions (e.g., cities), and TACF and UPS-CF suffer from the severe
data sparsity in this scenario while JIM, SVDFeature and LCA-
LDA are latent class models and integrate content information of
POIs, which can alleviate the data sparsity problem to a great ex-
tent. 2) UPS-CF performs better than TACF, showing the benefits
brought by exploiting social influence. The check-in records left
by social friends can help alleviate the issue of data sparsity in the
out-of-town scenario to a small extent, since we sometimes travel
out of town to visit our friends. 3) JIM and SVDFeature perfor-
m better than LCA-LDA. This is because LCA-LDA ignores both
temporal effect and geographical influence compared with JIM and
SVDFeature. 4) JIM achieves much higher recommendation accu-
racy than SVDFeature although they use the same types of features
and information, showing the advantage of probabilistic generative
models over feature-based matrix factorization. This may be be-
cause some important information is lost when discretizing time
and geographical location information in SVDFeature.

In Figure 2(b), we report the performance of all recommendation
models for the home-town scenario. From the results, we observe
that the recommendation accuracies of all methods are higher in
Figure 2(b) than that in Figure 2(a). Besides, LCA-LDA outper-
forms TACF in Figure 2(a) while TACF slightly exceeds LCA-LDA
in Figure 2(b) due to its incorporation of temporal effect, showing
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Figure 2: Top-k Performance on Foursquare Dataset

that time-aware collaborative filtering method better suits the set-
ting where the user-POI matrix is not sparse, and the model-based
method which integrates content information of POIs is more capa-
ble of overcoming the difficulty of data sparsity in the out-of-town
scenario. Another observation is that the performance gap between
our JIM model and other competitor methods is smaller than that in
Figure 2(a), showing that the performance differences among rec-
ommendation methods become less obvious when the issue of data
sparsity is not serious. The comparison between Figure 2(a) and
Figure 2(b) also reveals that the two recommendation scenarios are
intrinsically different, and should be separately evaluated.

Figure 3 reports the performance of the recommendation models
on the Twitter dataset. We do not compare our model with UPS-CF
since this dataset does not contain user social network information.
From the figure, we can see that the trend of comparison result
is similar to that presented in Figure 2, and the main difference
is that all recommendation methods achieve lower accuracy. This
may be because users in the Foursquare dataset have more check-in
records on average than users in the Twitter dataset, which enables
the models to capture users’ interests more accurately.

4.3 Impact of Different Factors

Methods Out-of-Town Scenario Home-Town Scenario
Ac@1 [ Ac@10 | Ac@20 | Ac@1 | Ac@I10 | Ac@20
JIM-S1 0.052 0.108 0.134 0.101 0.204 0.253
JIM-S2 0.045 0.096 0.119 0.117 0.226 0.280
JIM-S3 0.049 0.101 0.125 0.112 0.219 0.271
JIM-S4 0.056 0.113 0.140 0.106 0.212 0.262
JIM 0.062 0.121 0.149 0.124 0.241 0.298

Table 3: Recommendation Accuracy on Foursquare Dataset.

Out-of-Town Scenario Home-Town Scenario

Methods

Ac@] | Ac@10 [ Ac@20 | Ac@] | Ac@10 | Ac@20
JIM-S1 0.033 0.072 0.089 0.084 0.162 0.199
JIM-S2 | 0.028 0.064 0.079 0.095 0.179 0.220
JIM-S3 | 0.031 0.067 0.083 0.091 0.173 0.213
JIM-S4 | 0.037 0.075 0.093 0.088 0.168 0.206
JIM 0.041 0.080 0.099 0.100 0.191 0.235

Table 4: Recommendation Accuracy on Twitter Dataset.

To explore the benefits of integrating the temporal effect, con-
tent effect, word-of-mouth effect and geographical influence into
JIM model, respectively, we compare our JIM model with four
baselines, JIM-S1, JIM-S2, JIM-S3 and JIM-S4. The comparison
results are shown in Tables 3 and 4. From the results, we first ob-
serve that JIM consistently outperforms the four baselines in both
out-of-town recommendation scenario and home-town recommen-
dation scenario, indicating that JIM benefits from simultaneously
considering the four factors influencing users’ decision-making in
a joint way. Second, we observe that the contribution of each factor
to improve recommendation accuracy is different. Besides, another
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Figure 3: Top-k Performance on Twitter Dataset

observation is that the contributions of the same factor are differ-
ent in the two different recommendation scenarios. Specifically,
according to the importance of the four factors in the out-of-town
recommendation scenario, they can be ranked as follows: Content
Effect > Word-of-Mouth Effect > Temporal Effect > Geograph-
ical Influence, while in the home-town recommendation scenario
they can be ranked as: Temporal Effect > Geographical Influence
> Word-of-Mouth Effect > Content Effect. Obviously, the content
information plays a dominant role in overcoming the issue of data
sparsity of out-of-town recommendation scenario, while the tem-
poral effect is most important to improve home-town recommen-
dation. This is because the two recommendation scenarios have
different characteristics: 1) most of users have enough check-in
records in their home towns while few check-in activities are left in
out-of-town regions; 2) the limitation of travel distance in the out-
of-town scenario does not matter as much as that in home town; and
3) users’ daily routines may change when they travel out of town.

4.4 TImpact of Model Parameters

Tuning model parameters, such as the number of topics (i.e., K),
the number of regions (i.e., R), is critical to the performance of
JIM model. We therefore study the impact of model parameters on
Foursquare dataset in this section.

As for the hyperparameters «, =, 8 and 7, following recen-
t works [24, 31], we empirically set fixed values (i.e., « = 50/ K,
v = 50/R, B = 7 = 0.01). We tried different setups and found
that the performance of JIM model is not sensitive to these hyper-
parameters, but the performance of JIM is sensitive to the number
of topics and regions. Thus, we tested the performance of JIM
model by varying the number of topics and regions, and present the
results in Tables 5 and 6. From the results, we observe that the rec-
ommendation accuracy of JIM first increases with the increasing
number of topics, and then it does not change significantly when
the number of topics is larger than 80. Similar observation is made
for increasing the number of regions (i.e., R): the recommendation
accuracy of JIM increases with the increasing number of regions,
and then it does not change much when the number of regions is
larger than 120. The reason is that K and R represent the model
complexity. Thus, when K and R are too small, the model has lim-
ited ability to describe the data. On the other hand, when K and
R exceed a threshold, the model is complex enough to handle the
data. At this point, it is less helpful to improve the model perfor-
mance by increasing K and R. It should be noted that the perfor-
mance reported in Figure 2 is achieved with 100 latent topics (i.e.,
K = 100) and 150 latent regions (i.e., R = 150). Similar obser-
vations are also made on the Twitter dataset, and the experimental
results presented in Figure 3 are obtained with the optimal param-
eter settings ' = 100 and R = 240 since the check-in records in
the Twitter dataset are more widespread in the geographical space
than the check-ins contained in the Foursquare dataset.
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R K K=20 | K=40 | K=60 | K=80 | K=100 | K=120
R=30 | 0.089 | 0.095 | 0.099 | 0.101 | 0.101 0.101
R=60 | 0.095 | 0.102 | 0.106 | 0.108 | 0.108 0.109
R=90 | 0.101 | 0.108 | 0.113 | 0.115 | 0.116 0.116

R=120 | 0.106 | 0.113 | 0.118 | 0.120 | 0.120 0.121

R=150 | 0.106 | 0.113 | 0.118 | 0.120 | 0.121 0.121

R=180 | 0.106 | 0.113 | 0.118 | 0.121 | 0.121 0.121

Table 5: Out-of-Town Recommendation Accuracy @10.

K=20 | K=40 | K=60 | K=80 | K=100 | K=120

30 | 0.178 | 0.190 | 0.198 | 0.202 | 0.203 0.203
=60 | 0.191 | 0.204 | 0.213 | 0.217 | 0.217 0.217
R=90 | 0.204 | 0.217 | 0.227 | 0.231 | 0.232 0.232
R=120 | 0.212 | 0.227 | 0.236 | 0.241 | 0.241 0.241
R=150 | 0.212 | 0.227 | 0.236 | 0.241 | 0.241 0.242
R=180 | 0.212 | 0.227 | 0.237 | 0.241 | 0.241 0.242

Table 6: Home-Town Recommendation Accuracy @10.

4.5 Recommendation Efficiency

This experiment is to evaluate the online recommendation effi-
ciency. For the online recommendation of JIM, we adopt two meth-
ods. The first one is called JIM-TA which adopts the TA-based
query processing technique [31] to produce online recommenda-
tion. The second is called JIM-BF which uses a naive brute-force
algorithm to produce top-k recommendations, i.e., to compute a
ranking score for all POIs, and then choose k ones with largest
ranking scores. As the feature-based matrix factorization model
SVDFeature can be seamlessly integrated with the Metric Tree-
based retrieval algorithm proposed in [15], we compare JIM-TA
with it (SVDFeature-MT). Note that the ranking function in SVD-
Feature is not monotonic and, hence, the TA-based query process-
ing technique cannot apply to it. All the online recommendation
algorithms were implemented in Java (JDK 1.6) and run on a Lin-
ux Server with 32G RAM.

Table 7 presents the average online efficiency of three different
methods over all queries created for D;cs¢. We show the perfor-
mance where k is set to 1, 5, 10, 15 and 20. A greater value of
k is not necessary for the top-k recommendation task. For exam-
ple, on average JIM-TA finds the top-10 recommendations from
about 62,000 POIs in 10.4 ms. From the results, we observe that 1)
both JIM-TA and SVDFeature-MT outperform JIM-BF significant-
ly, justifying the benefits brought by pruning POI search space to
avoid scan all ones; 2) JIM-TA is more efficient than SVDFeature-
MT, this is because JIM-TA makes full use of the monotonic of the
ranking function in Equation 23 and achieves a tighter upper bound
for effective pruning, which results in the decrease in the number
of POIs to be examined, while the ranking function in SVDFea-
ture does not have the nice property of monotonicity; and 3) the
time costs of both JIM-TA and SVDFeature-MT increase with the
increasing number of recommendations (i.e., k), but they are still
much lower than that of JIM-BF in the recommendation task.

. Online Recommendation Time Cost (ms)
Methods k=1 k=5 | k=10 | k=15 | k=20
JIM-TA 3.21 5.45 9.67 17.24 33.36
JIM-BF 145.34 | 145.34 | 145.34 | 145.34 | 145.34
SVDFeature-MT | 12.02 28.46 36.78 54.06 82.17

Table 7: Recommendation Efficiency on Twitter Dataset.

S. RELATED WORK

POI recommendation, also called location or place recommen-
dation, has been considered as an essential task in the domain of
recommender systems. Bao et al. [2] provided a good survey on

POI recommendation. It was firstly investigated and studied on tra-
jectory data. Due to the lack of mapping relationship between geo-
graphical coordinates and specific real-world POIs, a POI is usually
defined as the stay points extracted from users’ trajectory logs [37,
36]. Recently, with the development of location-based social net-
works, it is easy for users to check-in at POIs in the physical world,
resulting in easy access of large-scale check-in records. Based on
the LBSNs data, many recent work has tried to improve POI rec-
ommendation by exploiting and integrating geographical and social
influence, temporal effect and content information of POIs.

Geo-Social Influence. Many recent studies [8, 11, 29, 10, 33]
showed that there is a strong correlation between user check-in ac-
tivities and geographical distance as well as social connections,
so most of current POI recommendation work mainly focuses on
leveraging the geographical and social influences to improve rec-
ommendation accuracy. For example, Ye et al. [29] delved into
POI recommendation by investigating the geographical influences
among locations and proposed a system that combines user prefer-
ences, social influence and geographical influence. Cheng et al. [6]
investigated the geographical influence through combining a multi-
center Gaussian model, matrix factorization and social influence
together for location recommendation. Lian et al. [18] incorporated
spatial clustering phenomenon resulted by geographical influence
into a weighted matrix factorization framework to deal with the
challenge from matrix sparsity. However, all of them do not con-
sider the current location of the user. Thus, no matter whether the
user is located in the home town or traveling out of town, they will
recommend the same POIs to the user. In light of this, Ference et
al. [11] designed a collaborative recommendation framework which
not only investigates the roles of friends and similar users in POI
recommendation, but also considers the current location of the user.

Temporal Effect. The temporal effect of user check-in activi-
ties in LBSNs has also attracted much attention from researchers.
POI recommendation with temporal effect mainly leverage tempo-
ral cyclic patterns and temporal chronological patterns on LBSNs.
Gao et al. [12] investigated the temporal cyclic patterns of user
check-ins in terms of temporal non-uniformness and temporal con-
secutiveness. Yuan et al. [32] also incorporated the temporal cyclic
information into a user-based collaborative filtering framework for
time-aware POI recommendation. Cheng et al. [7] introduced the
task of successive personalized POI recommendation in LBSNs by
embedding the temporal chronological patterns.

Content Information. Most recently, researchers explored the
content information of POISs to alleviate the problem of data spar-
sity. Hu et al. [14] proposed a spatial topic model for POI rec-
ommendation considering both spatial aspect and textual aspect of
user posts from Twitter. Liu et al. [21] studied the effect of POI-
associated tags for POI recommendation with an aggregated LDA
and matrix factorization method. Yin et al. [31] exploited both per-
sonal interests and local preferences based on the contents associ-
ated with spatial items. Gao et al. [13] and Zhao et al. [34] studied
both POI-associated contents and user sentiment information (e.g.,
user comments) into POI recommendation and reported their good
performance. However, all of them do not consider the time infor-
mation associated with the contents of POIs.

As described above, while there are many studies to improve the
POI recommendation by exploiting geographical-social influence,
temporal effect and content information, they lack an integrated
analysis of their joint effect to alleviate the issue of data sparsity,
especially in out-of-town recommendation scenario. Most of the
above work assumed that users are in home town, thus they ignored
that users’ interests can vary drastically at different regions (e.g., c-
ities), failing to deal with user interest drift. Our proposed method
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strategically takes all these factors into consideration and presents
a flexible probabilistic generative model for both home-town rec-
ommendation and out-of-town recommendation. To deal with the
drift of user interests, our method considers the current location of
the user and exploits the local word-of-mouth effect. Moreover,
we are the first to study the importance of each mentioned factor
to overcome the data sparsity in both home-town and out-of-town
recommendation scenarios under a unified framework.

Although some recent literatures [3, 22] used classification-based
method to predict the next place a user will move by extracting
multiple features from users’ movement history, their problem def-
inition is different from ours. They assumed that the querying user
is currently located at a POI, and exploited sequential pattern infor-
mation to predict the next POI.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a joint probabilistic generative model
JIM to model users’ check-in behaviors in LBSNs, which strate-
gically integrates the factors of temporal effect, content effect, ge-
ographical influence and word-of-mouth effect in a unified prob-
abilistic framework to effectively overcomes the issues of data s-
parsity and user interest drift, especially when users travel out of
town. To demonstrate the applicability and flexibility of JIM, we
investigated how it supports two recommendation scenarios in a
unified way, home-town recommendation and out-of-town recom-
mendation. We conducted extensive experiments to evaluate the
performance of our JIM model in terms of both effectiveness and
efficiency. The results showed superiority of JIM model over other
competitor methods. Besides, we studied the importance of each
factor in improving both home-town and out-of-town recommen-
dation under the same framework, and found that the content in-
formation plays a dominant role in overcoming the data sparsity in
out-of-town recommendation scenario, while the temporal effect is
most important to improve home-town recommendation.

As a promising research direction, we would like to explore en-
hancements to our model by integrating the social influence.
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