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Abstract. Network embedding aims to learn vector representations of
vertices, that preserve both network structures and properties. How-
ever, most existing embedding methods fail to scale to large networks.
A few frameworks have been proposed by extending existing methods
to cope with network embedding on large-scale networks. These frame-
works update the global parameters iteratively or compress the network
while learning vector representation. Such network embedding schemes
inevitably lead to a high cost of either high communication overhead
or sub-optimal embedding quality. In this paper, we propose a novel
decentralized large-scale network embedding framework called DeLNE.
As the name suggests, DeLNE divides a network into smaller parti-
tions and learn vector representation in a distributed fashion, avoiding
any unnecessary communication overhead. Our proposed framework uses
Variational Graph Convolution Auto-Encoders to embed the structure
and properties of each sub-network. Secondly, we propose an embed-
ding aggregation mechanism, that captures the global properties of each
node. Thirdly, we propose an alignment function, that reconciles all sub-
networks embedding into the same vector space. Due to the parallel na-
ture of DeLNE, it scales well on large clustered environments. Through
extensive experimentation on realistic datasets, we show that DeLNE
produces high-quality embedding and outperforms existing large-scale
network embeddings frameworks, in terms of both efficiency and effec-
tiveness.

Keywords: Network Embedding · Distributed System · Auto-encoder ·
Embedding Alignment

1 Introduction

Learning continuous low-dimensional vector representations of nodes in a net-
work has recently attracted substantial research interest. Data from networks
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such as E-commerce platforms, scholarly libraries, social media, medicine, service
providers [2, 5, 24, 25] etc. in its raw form is not directly applicable to emerging
Machine Learning (ML) approaches, as they requires low-dimensional vector rep-
resentations for computation. Formulating vector representations of these data
networks, which can be utilized as an input to many ML systems, is identified
as “Network Embedding” [1]. High-quality network embedding is imperative for
accurately performing network inference tasks, e.g. link prediction, node classi-
fication, clustering, visualization and recommendation. State-of-the-art network
embedding methods like node2vec, Line, DeepWalk and SDNE [3, 17, 20, 22] ef-
fectively preserve the network structure properties. However, in the case of large-
scale networks, especially the dynamically growing networks, being confronted
with more sophisticated network structure, these state-of-the-art network em-
bedding methods fall short on both computational efficiency and embedding
quality.

To tackle the crucial task of efficiently producing network embedding on large
networks, some large-scale network embedding frameworks have been proposed.
These frameworks mostly perform the task by: 1) coarsening the network (i.e.
dividing it into smaller chunks), 2) sharing the embedding parameters and 3)
utilizing matrix multiplication to reduce data dimensions. Yet, existing network
coarsening techniques can hardly guarantee the embedding quality, as the degree
of coarsening increases [12], due to loss of information (i.e. local structure). Shar-
ing of global parameters introduces immense communication overhead, while ma-
trix multiplication-based approaches incur high memory cost. These frameworks
are further described in Section 5.

With the increasing availability of large-scale distributed systems and cloud-
based resources, another possible approach to address the large-scale network
embedding problem is to carry out representation learning in a decentralized
fashion. Decentralized scheme is beneficial for effective utilization of cloud-based
resources. It is faster to generate node embedding due to parallel computation of
gradients, while avoiding synchronization of global parameters and being easily
scalable in the case growing networks. But before we can enjoy the benefits of
decentralized scheme, we must solve the following three challenges imposed: 1)
producing quality partitions, 2) preserving network properties in the absence of
global parameters, and 3) aligning the distributively learned node representa-
tions into the same vector space.

Commonly, large networks can be expressed as a collection of smaller well-
defined communities [13], interconnected through border nodes, known as an-
chor nodes [8]. For example, in an academic network, if a scholar collaborates
frequently with researchers from two different research areas, this scholar can be
regarded as the anchor node between two research communities. Anchor nodes
act as bridges in order to diffuse information between communities [8].

Motivated by the fact that large networks consist of numerous communi-
ties that share a variety of anchor nodes, we present Decentralized Large-scale
Network Embedding Framework (DeLNE). DeLNE learns node representations
from large-scale networks in a distributed fashion. Our proposed model aims
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to address the limitations of existing techniques by avoiding excessive commu-
nication overhead caused by parameter sharing. DeLNE identifies the optimal
number of divisions for a given large-scale network, based on min-edge cut. It
partitions the network into multiple well-defined communities with high neigh-
borhood densities. Our framework then learns node embedding of each partition
independently in a distributed environment. It then realigns the learned node
representations into the same embedding space, by learning an alignment func-
tion. DeLNE stands out in its high scalability, even if the size of any partition
grows or new sub-networks are introduced to the network. The main contribu-
tions of this paper are threefold:

– We advance the existing network embedding methods to cope with very
large-scale networks in a parallel and distributed fashion. This allows for
efficient computation on very large networks while preserving properties and
structural information.

– In DeLNE, we present an aggregation function that captures the global prop-
erties of the sub-network, by actively fusing the information of neighbour
nodes. We present an embedding alignment scheme that refines the dis-
tributed embedding onto the same embedding space.

– We conduct extensive experimentation on large-scale networks, to evaluate
the effectiveness and efficiency of DeLNE. Experiments suggest that DeLNE
outperforms the existing state-of-the-art and large-scale network embedding
techniques.

2 Preliminaries

2.1 Notations and Definitions

In this section, we first explain the notations adopted throughout the paper
(Table 1). For the ease of understanding, we also formally define the key technical
terms in this paper as follows.

Table 1. The notations adopted in the paper

Notation Definition

G An undirected network
V A set of vertices belonging to network G
E A set of edges belonging to network G
F A set of features associated with G
vi ith vertex ∈ V
ei ith edge ∈ E
d Depth of network G from a vertex v
GS Super network: Compressed representation of complete network

{G1,G2, ..Gk} A k way partitioned network
va Anchor node (a node having an edge in adjacent partition)
A An adjacency matrix of the network G
Zi Embedding of sub-network i
z An embedded vector
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Fig. 1. The overview of DeLNE framework.

Definition 1 (Super Network): a network G constructed by collapsing its
nodes (i.e. {∀v ∈ G}) using Heavy Edge Matching [12]. A single node in GS
represents numerous nodes in the original G.

Definition 2 (kth-Order Walk): augmenting the neighbourhood S of a
vertex (v ∈ G), from d=1 down to d=k. This augmentation is carried out in a
breadth-first (BFS) search manner.

Definition 3 (Anchor Node): the border nodes (va) of a partitioned net-
work. An anchor node va has an edge ea (i.e. anchor link) to the adjacent sub-
network, connecting one partition to another.

2.2 Problem Definition

Given a large-scale network G = (V, E ,F) having dimensions (d� |V|), we aim
to learn node representations of a network G for its k partitions {G1,G2, ..Gk} in
a distributed fashion. We also want to learn an alignment function M : L|zs−zt|,
that aligns (partitioned network using anchor nodes zs of source graph to zt of
target graph) and produces consistent node embeddings of each sub-network.
It should also preserve both local and global network structures, as well as the
node properties.

3 Methodology

To enable parallel computing for large-scale network embedding, DeLNE imple-
ments a master worker framework, consisting of four main phases: 1) network
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Fig. 2. Overlapping network partitioning by modifying multilevel graph partitioning
algorithm. Node X is an anchor node connecting both partition-1 and partition-2.
1st order neighbour hood of X i.e. node D and E from partition-1 and node 1 from
partition-2 are copied to the adjoining partitions.

partitioning, 2) local property-preserving node embedding, 3) global property-
preserving embedding aggregation, and 4) embedding refinement, i.e. mapping
sub-networks into the same embedding space. Fig. 1 presents an overview of the
DeLNE architecture. Firstly, the master controller partitions the network using
a non-overlapping network partitioning algorithm [9]. This divides the network
into k high-quality partitions. These partitions take the shape of communities,
based on their structural properties. Two neighborhood partitions are connected
via anchor nodes va. A copy of anchor node and its first-order neighbourhood
is kept at both sides of the connecting partitions. Master controller assigns each
partition to a unique worker. Each worker employs a Variational Graph Auto-
encoder (VGAE) to learn low-dimensional node representations dedicated to a
sub-network and a property aggregation function to capture global perspective
of the sub-network. Finally, we align the node embedding into the same space
by learning an alignment function supervised by the observed anchor nodes.

3.1 Network Partitioning

An important property exhibited by very large networks is their community
structures property. This translates the network into number of smaller modules
called clusters [13]. Each large network consists of several smaller communities
that share inherit characteristics or interests, e.g. people with interest in a com-
mon sport like football or basketball, followers of a particular political party
or opinion etc. It is therefore critical to partition a network, such that nodes
sharing similar characteristics are grouped together, against those nodes which
exhibit distinct characteristics. In other words, we aim to increase intra-cluster
connectivity and decrease the inter-cluster connectivity.

In order to partition the network, we propose a variant of multilevel graph
partitioning algorithm (METIS) [6]. As shown in Algorithm 1, multilevel parti-
tioning approach partitions a given graph in three phases, namely coarsening,
partitioning and uncoarsening. During the coarsening phase, the algorithm iter-
atively applies heavy-edge matching (HEM) to compute the edge matching, i.e.
finding a contraction between the vertex with the lowest degree and the vertex
with the highest weight (v1, v2), such that weight between them is maximized.
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Since the size of the corset graph is small, multilevel graph partitioning algo-
rithm efficiently apply graph growing heuristic to compute partitioning. Bound-
ary Kernighan-Lin (BKLR) algorithm is used to iteratively refine the corset
partitions. DeLNE does not involve sharing of any parameters or communica-
tion between the partitions during the learning phase. Rather, we learn the node
embedding of each sub-network independently and then map them into the same
space. To align the sub-networks and preserve better structural properties of the
anchor nodes, we make use of the non-overlapping partitioning (see Fig. 2). An-
chor nodes(e.g. node X in Fig. 2) are copied to the linked partition (doted line
in Fig. 2 represents such link), along with its 1st-order neighbourhood.

ALGORITHM 1: Multilevel Graph Partitioning

Input: G = (V, E), k
Output: [G1,G2, ...Gk]

1 while |v ∈ G| > k do
2 sort in increasing order of degree(v ∈ G) for ∀ v ∈ G do in

Parallel
3 collapse v with neighbour having highest w

4 [GS1,GS2, ...GSk]←Partition(GS)
5 for ∀ i ← k do in Parallel
6 Gi ←BKLR(GSi)
7 if Neighbour(v : (v ∈ Gi) /∈ Gi) then
8 Gi ∪ 1storder neighbourhood(v)

9 return [G1,G2, ...Gk]

3.2 Base Embedding

Our low-dimensional vector representations should effectively preserve both net-
work structure (for supporting the network reconstruction tasks) as well as net-
work properties (for network inference tasks). Commonly used network embed-
ding models include linear models e.g. matrix factorization [21, 23], skip-gram
models [3, 17, 20] and non-linear Graph Convolution Networks (GCNs) [1, 4, 7]
models. Traditional linear models can be classified as shallow models as they
only captures first-order connections. Skip-gram models aim to learn embed-
dings from linear space, leading to limited expressiveness. Non-linear models e.g.
GCNs address the previous problems, but heavily rely on high-quality labeled
data and hardly adapt to unsupervised learning. While working with large-scale
networks, due to their dynamics and node diversity, it is very difficult to asso-
ciate high-quality and consistent labels with each individual node. To capture
the non-linearity and preserve high-quality embeddings in the absence of la-
beled data, in DeLNE we employ Variational Graph Auto-Encoder (VGAE) [7],
to support unsupervised learning task.

Variational auto-encoder (VAE) modifies traditional auto-encoders by tak-
ing in a distribution qφ(z|v) rather than data points. By doing so the model is
able to adapt with and infer on unseen data. VAE encoder accepts data point
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Fig. 3. VGAE, having two layer GCN as encoder and a inner product decoder.

v and generates the means and standard deviation of the Gaussian distribution.
The lower-dimensional vector representation z is sampled using this distribu-
tion, qφ(z|v). The decoder takes in the embedding z and produces output using
variational approximation pθ(v|z).

To apply the idea of VAE on a network, we deploy a VGAE, that is able
to generate as well as predict unseen links and the structure. VGAE consists of
two parts: 1)An inference model (encoder) and 2) A generative model (decoder).
The inference model takes an adjacency matrix A and feature matrix F as its
input. It generates the mean and standard deviation through a function θ. As
show in Fig. 3, this encoder is constructed using two layers of GCN, given as:

µ = GCNµ(A,F) (1)

log σ = GCNσ(A,F) (2)

By combining the two layers together, we get:

GCN(A,F) = Ã Relu(W0FÃ)W1 (3)

where, W0 and W1 are the weight matrices of each layer. The generative
model consists of the inner product among the latent variables and is given as:

p(A|Z) = Πn
i=1Π

n
j=1p(A(i,j)|zi, zj) (4)

where A(i,j) ∈ A and p(A(i,j) = 1|zi, zj) = σ(zTi zj). Here σ(·) is a sigmoid func-
tion. The loss function for the optimization task, consists of two parts: 1)Recon-
struction loss between the input and reconstructed adjacency and 2) Similarity
loss, defined by KL-divergence.

L = −KL[q(Z|F ,A||p(Z))] + Eq(Z|F,A)[log(p(A|Z))] (5)

3.3 Embedding Aggregation

Each sub-network exhibits a unique global prospective, depending on its struc-
ture. If two sub-networks have similar structures, they should also resemble each
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Fig. 4. Global aggregation augments walks from each node down to depth d, in a BFS
fashion.

other in terms of their global characteristics [19]. In order to preserve this global
perspective of a sub-network, we introduce an embedding aggregation function.
This function aggregates the vector representations of vertices, that are kth order
neighbour of v in a breath first search (BFS) fashion, much in the same way as
Weisfeiler-Lehman algorithm [19]. The resultant aggregation (i.e. ẑ1 + ẑ2...+ ẑd)
is then concatenated with z, as shown in Fig. 4. This process is repeated for the
entire sub-network. At each level of the depth, a weight, inversely proportional
to the depth is multiplied with aggregation. The aggregation and concatenation
of each vertex is given as:

ẑ = z⊕
d∑
l=1

wl(

n∑
i=1

zi,l) (6)

where, z is the base embedding of vertex v, d is the depth, n are the number of
vertices at d and wl = 1

d .
The benefit of this approach is that, for vertices having similar neighbourhood

structures, their aggregated embeddings will be close to each other in the vector
space. Correspondingly, if two sub-networks are alike in their structures, they
will have highly similar node embeddings. In our experiments, we aggregated
node embeddings down to d = 4.

3.4 Embedding Refinement

The key challenge faced while learning network representation in a distributed
system is reconciling of sub-networks embeddings into the same embedding
space. Directly projecting the embeddings within k partitions into a unified vec-
tor space is a straightforward approach. However, it is impractical when dealing
with large-scale networks as the huge amount of parameters used for embeddings
makes it highly demanding on computational resources. So, in what follows, we
describe an innovative embedding alignment approach.

As discussed earlier, a large network consists of numerous smaller communi-
ties [13]. These communities are interconnected with each other through an edge
eB , connecting a common (anchor) node va [8]. For example, in a social network
person X can be a member of both a hockey and a football fan club, making him
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the anchor node. In our framework we have partitioned the network in an over-
lapping fashion, such that we keep a copy of anchor node va as vs, ut (source and
target) at both connected partitions of the network. For example, in Figure 2
node X can be considered as vs in partition-1 and vt in partition-2. Embeddings
of each sub-network are constructed independently and possess separate latent
representation. Hence they require alignment. Anchor nodes (vs, vt, having pres-
ence in multiple sub-networks) act as a bridge to align one embedding space
with the other. Therefore with the help of these anchor nodes we translate one
embedding space into the other embedding space, such that the anchor nodes are
aligned. As a result of this translation process, all nodes in both sub-networks
are aligned with the alignment of the anchor nodes. It is important to note that
first-order neighbourhood of an anchor node is copied to each partition (Fig.
2). This helps in preserving similar local properties of the same (anchor) nodes
belonging to different partitions, during the network embedding phase.

Embedding Alignment: Assume we have a network partitioned into k
sub-networks and learned node embeddings Z1,Z2, ...Zk of the respective sub-
networks. Without loss of generality, let us assume that we want to align embed-
dings Z1,Z2, ...Zk into the same embedding space, say Z0. The purpose here is
to learn the mapping function M , supervised by anchor nodes vs0, v

t
k ∈ J , having

embeddings zs0, z
t
k. Here J is a collection of marked anchor links. Motivated by

Matrix Translation and Supervised Embedding Space Matching [15] and given
zs0 ∈ Z0, our mapping function projects zs0 ∈ Z0 and ztk ∈ Zt into same space.
Alignment Loss (La) is given as:

La =
∑

us
0,u

t
k∈J

‖M(zs0; w)− ztk ‖F (7)

where w is the vector of weights, such that zs0 × w effectively approximates ztk,
while ‖ · ‖F represents Frobenius norm, that gives the distance between source
embeddings and target embedding. The parameters of the mapping function M
can be obtained by minimizing the loss function given in equation (7), using
scholastic gradient descent (SGD). To capture non-linear relationship between
vs0 and vtk, we employ Multi-Layer Perceptron, having sigmoid σ activation at
each layer.

On receiving the embeddings from the first two workers, whose sub-networks
are connected, we align the node embeddings into the same vector space. As
more workers report their learned embeddings they are aligned into the initial
space in parallel. Even if we only focus on mapping the anchor nodes, the learned
mapping function is able to map the whole embedding space. This comes from
the fact that the embeddings of nodes in the same network are considered to be
in the same space. As we align the anchor nodes, the mapping function is able
to align the whole embedding space as well.
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4 Experiments

In this section we report our experimental findings on several large-scale datasets
to showcase the effectiveness of DeLNE. Particularly, we aim to answer the
following research questions:

– How is the embedding quality of DeLNE compared with state-of-the-art
embedding methods for medium-sized networks?

– When handling large-scale networks, is DeLNE able to effectively preserve
network properties compared with other large-scale network embedding
frameworks?

– How efficient is DeLNE compared with existing large-scale embedding frame-
works?

4.1 Experimental Environment

We carry out our experiments on two Linux-based servers. The master controller
server has 256-GB of RAM, 40 CPU cores and NVIDIA GPU (GeForce GTX
1080 Ti), is utilized as the master node. Worker nodes are deployed as separate
virtual machines on another server with 1024 GB RAM and 80 CPU cores.

4.2 Dataset

We test and compare our framework on five real-world datasets from different
domains, as presented in Table 2. Wiki [23] contains 2,405 documents, having
17,981 links and 19 classes. Github [18] is a social network consisting of github
developers, where edges represents following relationship. BlogCatalog [26] is a
directory of social blog that manages the bloggers and their blogs. The YouTube
[16] dataset consists of friendship groups and consists of over 1.1 million users
and 4.9 million links. Flickr [16] dataset consists of edges that are formed between
images shared between friends, submitted to similar galleries or groups etc.

Table 2. Statistics of datasets used in our experiments.

Dataset Wiki Github BlogCatalog Youtube Flickr

#Nodes 2,405 37,700 88,784 1,134,890 1,715,255
#Edges 17,98 289,003 4,186,390 4,945,382 22,613,981
#Class Labels 19 2 39 47 20

4.3 Experimental Settings

To adjust the hyper-parameters, we adjust different settings of DeLNE and eval-
uate the performance on YouTube network. It is a large-scale network, having a
large number of labeled nodes, making node classification task harder. For this
reason YouTube network is widely adopted to test the performance by large-scale
network embedding frameworks [11, 12, 27, 29]. To identify the optimal number
of anchor nodes, we conduct our experiments by altering the number of anchor
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nodes, kept at each partition. These anchor nodes are selected based on a de-
creasing order of their degrees. As indicated in Table 3, keeping 500 bridging
nodes as anchor nodes outperforms other settings. We also run our experiments
by altering the number of network partitioning (γ). For medium scale networks,
we adjust γ = 10,20 and 30. For Large graphs, we set γ = 100,150 and 200.

Table 3. Effectiveness and efficiency of DeLNE for different setting of anchor nodes,
on YouTube dataset.

Number of Anchor Nodes 0 500 1000 2000

Accuracy 0.27 0.51 0.47 0.42
Training Time 2.06 2.36 2.85 3.55

Table 4. Running time for network embedding on YouTube dataset. For DeLNE run-
ning time refers to the sum of training time at each cluster, global properties aggrega-
tion time and Embedding Alignment Time.

Embedding Framework GPU Clusters Training Time (min)

LINE - 1 92.2
DeepWalk - 1 107.8
SDNE 1 1 memory error

COSINE(DeepWalk) - 1 10.83
COSINE(LINE) - 1 4.17
GraphVite 1 1 4.12

DeLNE-100 1 100 2.36
DeLNE-150 1 150 2.30
DeLNE-200 1 200 2.30

4.4 Baselines

Given below are the state-of-the-art network embedding methods, we employ
as baseline to compare effectiveness and efficiency of DeLNE. Experiments are
conducted using both computationally expensive embedding methods as well as
large-scale network embedding frameworks.

– DeepWalk [17] constructs node sequences by employing random walks to
learn embeddings.

– LINE [20] optimizes the objective function of edge reconstruction in-order
to construct embeddings. parameters were set as;

– SDNE [22] preserves non-linear local and global properties using a semi-
supervised deep model.

– COSINE [27] learns embeddings on top of existing state-of-the-art embed-
ding methods, using parameter sharing on partitioned networks.

– SepNE [11] is a flexible, local and global properties preserving network em-
bedding algorithm which independently learns representations for different
subsets of nodes.

– GraphVite [29] is a CPU/GPU hybrid system, that augments random walks
on CPU in a parallel fashion. On GPU‘s it trains node embedding simulta-
neously by deploying state-of-the-art embedding methods.
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4.5 Effectiveness of DeLNE as Compared to Traditional Embedding
Methods

To test the effectiveness of our proposed model we deploy multi-label classifi-
cation task. The main idea is how well a given model can predict whether a
node belongs to a certain community (label) or not. We test our model against
state-of-the-art embedding models using medium sized datasets i.e. Wiki, Github
and BlogCatalog. As for larger datasets, which are computationally expensive
and slower to train on state-of-the-art models, we employ large-scale embedding
frameworks.

Table 5. Results of Multi-label prediction on Wiki, Github and BlogCatalog (BC), as
compared with state-of-the-art embedding methods (micro-averaged F1 scores).

Wiki Github BlogCatalog

Labeled Nodes 10% 90% 10% 90% 10% 90%

DeepWalk 0.3265 0.4357 0.7417 0.7387 0.1578 0.2030
Line 1storder 0.3265 0.4357 0.7630 0.7689 0.1467 0.1989

Line 2ndorder 0.3307 0.3307 0.7392 0.7469 0.1139 0.1533
SDNE 0.5044 0.6237 0.7766 0.7745 0.1734 0.1857
DeLNE-10 0.6575 0.6596 0.8397 0.8651 0.2151 0.2254
DeLNE-20 0.6486 0.6502 0.8405 0.8711 0.2405 0.2556
DeLNE-30 0.6331 0.6408 0.8331 0.8625 0.2403 0.2728

As Table 5 shows, our method out performs state-of-the-art network meth-
ods for all three datasets. This is because the structure of partitions plays an
important role in identifying the node labels i.e, if the partitions form dense
communities, better performance will be observed from our framework. For the
smallest dataset, i.e. Wiki, DeLNE-10 outperforms all. DeLNE-20 works best for
medium sized dataset.

4.6 Effectiveness of DeLNE as Compared to Large-scale Embedding
Frameworks

To compute the effectiveness of our model for large-scale datasets, we predict
labels for networks consisting of millions of nodes and billion of edges. To com-
pare our results with state-of-the-art methods we employ large-scale embedding
frameworks, since these datasets are computationally expensive.

Both for Youtube and Flickr networks, as shown in Table 6 and Table 7,
DeLNE outperforms SepNE, COSINE and GraphVite. For Flickr network, Deep-
Walk and LINE settings of GraphVite slightly outperforms DeLNE. But as the
number of labeled nodes are increased, DeLNE surpasses all the other frame-
works.

4.7 Time Efficiency

Here we compare DeLNE with other large-scale network embedding methods
regarding training efficiency. The time in Table 5, depicts training time plus
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Table 6. Results of Multi-label prediction on Youtube (micro-averaged F1 scores).

Labeled Nodes 1% 3% 5% 10%

SepNE 0.2253 0.3361 0.3620 0.3882
COSINE(DeepWalk) 0.3650 0.4110 0.4230 0.4400
COSINE(LINE) 0.3631 0.4160 0.4271 0.4441
GraphVite (LINE) 0.3836 0.4217 0.4444 0.4625
GraphVite (DeepWalk) 0.3741 0.4212 0.4447 0.4639
DeLNE 0.4132 0.4360 0.4892 0.5130

Table 7. Results of Multi-label prediction on Flickr (micro-averaged F1 scores).

Labeled Nodes 1% 3% 5% 10%

SepNE 0.4269 0.4468 0.4562 0.4623
COSINE(DeepWalk) 0.4040 0.4140 0.4190 0.4230
COSINE(LINE) 0.4080 0.4180 0.4240 0.429
GraphVite (LINE) 0.6103 0.6201 0.6259 0.6305
GraphVite (DeepWalk) 0.6125 0.6144 0.6216 0.6298
DeLNM-100 0.5933 0.6136 0.6201 0.6312

aggregation time (maximum of all the workers) and network alignment time.
It should be mentioned here that we do not compare time of SepNE, since it
focuses on learning embeddings of certain components of a network and invites
a sizeable computation overhead encase of embedding the entire network. By
running efficiency tests on two large-scale datasets (YouTube and Flickr), we
show our frame work outperforms all the base lines. We can also see that varying
γ in {100, 150, 200}, for DeLNE, does not improve efficiency too much.

0 2 4 6 8 10 12

COSINE(LINE)

COSINE(DW)

GraphVite

DeLNE-100

DeLNE-150

DeLNE-200

YouTube

Training time in minutes

0 2 4 6 8 10 12 14 16

COSINE(LINE)

COSINE(DW)

GraphVite

DeLNE-100

DeLNE-150

DeLNE-200

Flickr

Training time in minutes

Fig. 5. A: Total Time in minutes taken to compute embeddings for Youtube dataset.
B:Total Time in minutes taken to compute embeddings for Flickr dataset.

5 Related Work

State-of-the-art embedding methods can be divided in to two categories, namely
structure-preserving and property-preserving embedding methods. Structure pre-
serving methods such as node2vec [3] and DeepWalk [17] samples k-order random
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walks on each node of a network. These walks are treated as sentences and Skip
Gram is applied to obtain embedding. LINE [20] captures first and second-order
proximity to learn embedding. SDNE [22], not only captures second-order prox-
imity, but also non-linear structure using deep neutral networks. Property pre-
serving embedding methods, such as MMDW[21] and TADW[23] deploy matrix
factorization-based techniques to embed networks.

Large-scale network embedding frameworks, such as MILE [12], coarsens a
very large network to perform network embedding and refine the embedding
iteratively. This mechanism captures the global properties and transfers them
down through refinement. A key limitation of this technique lies in it’s ability
to deal with the increasing network size. In this approach, the quality of embed-
ding produced suffers, as the size of the network increases. In addition, refining
embedding down from a super-node to the original nodes, is computationally
expensive for large networks. Another approach to embed very large networks is
parameter sharing. This technique is utilized by COSINE, GraphVite and Py-
Torch-BigGraph (PGB) [10, 27, 29]. These frameworks adopt non-overlapping
network partitioning methods to create smaller partitions with distinct vertices.
They update the global parameter, at each iteration of learning phases. A lim-
itation to these approaches is there dependence on the bus-bandwidth. As the
network size increases, the communication cost of updating the parameters over
multiple iterations, aggravates.

Another variant network embedding method, Gaussian Random Projection
(GRP), applied by RandNE [28] preserves high order structure using distributed
multiplication, on the proximity matrix S. However, computing S on a single ma-
chine still remains expensive, for large networks. In parallel settings, this tech-
nique requires each computing machine to keep a complete copy of a network‘s
adjacency matrix. This requirement is not viable when embedding a very large
network.

In contrast, DeLNE utilizes parallelism and distributive computation to in-
crease efficiency, for large-scale networks. It preservers non-linearity using VGAE
while preserving global properties through an aggregation function. DeLNE also
aligns the embedding into same vector space, to insure the consistency of sub-
networks embedding.

6 Conclusion

In this paper, we presented a novel decentralized large-scale network embedding
framework, called DeLNE, which divides a network into multiple dense parti-
tions and performs node embedding in a parallel manner over distributed servers.
Our proposed framework uses Variational Graph Convolution Auto-Encoders to
embed structure, as well as local and global properties of each sub-network into
the vector space. In order to construct consistent embeddings of the entire parti-
tioned network, while avoiding parameter sharing overhead, we learn a network
alignment function. The alignment function maps the node embeddings received
from distributed servers onto the same embedding space. Through extensive ex-
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perimentation on real world datasets, we show that DeLNE produce high quality
embedding and outperforms state-of-the-art as well as large-scale network em-
bedding frameworks in terms of efficiency and effectiveness.
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