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Abstract—Topic models, such as LDA and its variants, are popular probabilistic models for discovering the abstract “topics” that occur
in a collection of documents. However, the performance of topic models may vary a lot for different workloads, and it is not a trivial task
to achieve a well-optimized implementation. In this paper, we systematically study all recently proposed samplers over LDA: AliasLDA,
F+LDA, LightLDA, and WarpLDA, and discover a novel system tradeoff by considering the diversity and skewness of workloads. Then,
we propose a hybrid sampler which can cleverly choose an efficient sampler with the tradeoff, and apply the hybrid sampler to LDA and
its variants, including STM, TOT and CTM. Finally, we build a fast and general topic modeling system Sys-TM, which provides a unified
topic modeling framework by integrating the hybrid sampler. Based on our empirical studies, the hybrid sampler outperforms the
state-of-the-art samplers by up to 2× over various topic models, and with carefully engineered implementation, Sys-TM is able to
outperform the existing systems by up to 10×.
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1 INTRODUCTION

TOPIC model, as a famous probabilistic model, is to
discover abstract “topics” that occur in a collection of

documents. The last decade has witnessed a wide array of
applications of such technique like marketing analysis [1],
social event analysis [2], [3], image processing [4], [5],
user modeling [6], [7] and software engineering [8]. Latent
Dirichlet Allocation (LDA) is the most famous topic model,
and abundance of systems are designed for LDA, including
LightLDA [9], YahooLDA [10]. However, none of these
systems is designed to deal with diversity and skewness
of workloads that we see from real-world datasets. On the
other hand, a variety of topic models have been proposed as
well. Taking some typical models as examples, Supervised
Topic Model (STM) [11] is an LDA variant which assumes
that each document is attached with a response variable
so that it can take more information about documents into
account; Topic over Time (TOT) [12] model assumes each
topic is associated with a continuous distribution over time
to capture how the popularity of topics changes over time;
and Correlated Topic Model (CTM) [13] uses the correlation
matrix of Gaussian distribution to model the correlation
between topics. But none of the existing systems is designed
to deal with LDA variants. In this paper, we ask how to design
a single system to efficiently support a variety of topic models with
the consideration of the diversity and skewness of workloads.

Challenge 1: the diversity and skewness of datasets.
In many applications, users need to run topic modeling
on documents of very different types such as web corpus,
user behaviors logs, and social network posts. Therefore,
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the length of documents varies—the average length of the
NIPS dataset is about 1,000 tokens while it is only 90 for
the PubMED dataset. More significantly, the word frequency
in most natural language corpus follows a power law dis-
tribution [14] where some words are orders of magnitude
more frequent than others. This diversity and skewness
of input corpus cause different systems to slow down on
different datasets we are trying to support. Worse, there are
no studies of this tradeoff available so far.

Challenge 2: the diversity of topic models. Some topic
models are constructed with different distributions, e.g.,
Dirichlet distribution in LDA and Logistic Normal distri-
bution in CTM, while some ones require different formats
of datasets, e.g., STM and TOT require documents with
labels and timestamps, respectively. To design a general
framework that can be easily extended to inference different
topic models with high performance, a systematic study
over various topic models and their inference algorithms
is needed. Although the algorithms for LDA have been
widely studied, there are still few studies on inference
algorithms for other topic models and none of the state-of-
the-art algorithms for LDA can be applied to them directly.

Motivated by these two challenges, we build a fast and
general topic modeling system, Sys-TM. It not only consid-
ers the diversity and skewness in datasets, but also supports
various other topic models. Our approach is to systemati-
cally study the system tradeoff caused by the diversity and
skewness of the workloads, unify a variety of topic models
and their inference algorithms, and design general topic
modeling framework accordingly. With the integration of
the recent exciting advancement of fast inference algorithms
for LDA model and carefully engineered implementation,
Sys-TM can be up to 10× faster than the existing systems
and allow users to easily implement their own new high-
performance topic models.
Overview of Technical Contributions

Gibbs sampling is the de facto algorithm to solve topic
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modeling that has been used intensively by previous
work [9], [10], [15], [16], [17], [18], [19]. We define a corpus
C = {D1, ..., Dn} as a set of documents, and each document
Di contains a set of tokens {tij}, and let T be the set of
all tokens. Let V be the vocabulary, a set of distinct words
that a token can take value from, and K be the number
of topics, which is usually a hyperparameter to the system.
The goal of topic modeling is to assign for each token tij a
topic distribution—one probability value for each of the K
topics. The data structures involved in topic modeling can
be represented with two matrices: (1) Cw : V 7→ NK+ assigns
each word to a topic distribution, and (2) Cd : C 7→ NK+
assigns each document to a topic distribution. With Gibbs
sampling, the order of assigning topics to tokens varies
among different models. Typically, samplers can apply doc-
first order that sampling all tokens of one document before
another, or word-first order, vice versa.
1. Sampler Selection. We systematically study four sam-
plers of LDA model: AliasLDA, F+LDA, LightLDA, and
WarpLDA [9], [17], [18], [19], and focus on the question that
“Out of the four recently proposed Gibbs samplers, which
one should we select given a corpus?” As we will see, a
suboptimal selection of a sampler can be 5× slower than the
optimal strategy on LDA.

Sparsity-Aware (SA) Samplers. AliasLDA, and F+LDA
exploit the sparse structure of Cw and Cd to reduce the
sampling complexity. Traditionally SA samplers use word-
first order, and the complexity is O(Kd) for AliasLDA and
F+LDA, where Kd = |Cd(d)| is the number of topics ever
picked by at least one token in a document. When the length
of documents is skewed, the performance is dominated by
the longest document.

Metropolis-Hastings (MH) Samplers. LightLDA and
WarpLDA use Metropolis-Hastings to achieve an O(1) sam-
pling complexity. The time complexity per token of an MH
sampler is orthogonal to the document length, the word
frequency or the number of topics. However, MH samplers
usually require more than one sample for each token.

System Tradeoff. We discover a tradeoff between SA sam-
plers and MH samplers. The distributions of document
lengths and word frequencies are the keys. In word-first
order, when the datasets contain many long documents,
SA samplers can be 2× slower than MH samplers and
the performance gap can become more significant when
we increase the number of topics; on the other hand, MH
samplers need more iterations to converge to a compara-
ble solution—for dataset with many short documents, MH
samplers can be 1.5-5× slower than SA samplers. In doc-first
order, a similar tradeoff can be observed under the word fre-
quency distribution. Besides, a similar phenomenon holds
for the number of topics K.

Hybrid Sampler. The study of the tradeoff raises a ques-
tion that “Can we design a hybrid sampler that outperforms
both SA and MH samplers?” The answer is yes. We propose
a simple, but novel hybrid sampler based on F+LDA and
WarpLDA for topic models. The empirical results in Section
6 show that the hybrid sampler can consistently outperform
all others over all of our datasets by up to 2×.
2. Topic Model Revised. Besides LDA, we focus on three
other popular topic models, STM, TOT and CTM. We study
how to apply state-of-the-art samplers of LDA to them.

We summarize two rules for applying SA and MH
samplers to topic models. (1) In order to apply SA sam-
pler (F+LDA), we need to guarantee the computation in-
dependence between different topics, i.e., given two topics
k1 and k2, the computation of topic-related probabilities
should share no common variables. (2) For MH sampler
(WarpLDA), it has to draw samples from two proposal
distributions qdoc and qword. We only need to guarantee
that qdoc is independent of words and qword is independent
of documents. Therefore, we can simply set qdoc and qword

based on corresponding full conditional distribution.
Then we revise STM by following the idea of accepting

a sample with certain probability from Metropolis-Hastings
algorithm for approximation, so that the revised STM sat-
isfies rule (1) and can apply SA sampler. The evaluation
results show that the approximation does help STM benefit
from the SA sampler. And TOT and CTM are revised as well
based on the proposed rules.
3. Sys-TM Implementation and Empirical Evaluation. We
develop Sys-TM based on the study of system tradeoffs
and various topic models. Along with the previous two
technical contributions, we also describe engineering con-
siderations involved in building such a system. With the
systematical study of various topic models, we find that
most of topic modeling procedures are similar to the EM
evaluation framework. With this observation, we build Sys-
TM on top of a general topic modeling framework, which
contains sampling step and estimating step. Meanwhile Sys-
TM is equipped with a user-friendly programming inter-
face to allow user developing new high-performance topic
models flexibly. Furthermore, we conduct comprehensive
experiments with a set of real and large datasets—on these
datasets, Sys-TM can be up to 10× faster than the existing
systems.

This paper extends a preliminary work [20] in the fol-
lowing aspects. First, we systematically study a range of
topic models and the sampling-based inference algorithms
over these models. Second, we discover system tradeoffs
in all topic models we discussed and generalize the hybrid
sampler to all these models. Third, we implement a fast and
general topic modeling system Sys-TM based on our hybrid
samplers. Fourth, we conduct extensive experiments to ver-
ify the performance improvement of the hybrid samplers
over LDA variants.

2 PRELIMINARY

We start by describing topic modeling with LDA and how to
solve it with Gibbs sampling. We then present background
on the basis of Metropolis-Hastings, a general case of Gibbs
sampling that many state-of-the-art algorithms used to fur-
ther optimize their samplers.

2.1 Latent Dirichlet Allocation

LDA is a generative probabilistic model that runs over
a collection of documents (or other discrete sets). A cor-
pus C is a collection of D documents {d1, · · · , dD} and
each document di is a sequence of Li tokens denoted by
di = (t1, t2, · · · , tLi), where each token tn is a word. Each
word w is an item from a vocabulary set V . Let K be the
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Fig. 1. An example for Corpus. The numbers in the parentheses are the current
topic of each token. Cw and Cd contain counts of tokens that belong to a specific
topic.

number of topics, LDA models each document as random
mixtures over latent topics. Formally, each document d is
represented as K-dim topic distribution θd which follows
a Dirichlet prior α, while each topic k is a V -dim word
distribution φk which follows a Dirichlet prior β. LDA
generates a document d in the following steps:

1) Draw topic distribution θd ∝ Dir(α).
2) For each token,

a) Draw topic assignment zdn ∝Mult(θd).
b) Draw word tdn ∝Mult(φzdn).

We further denote Z = {zd}Dd=1 as the topic assignments
for all tokens, where zd = {zdn}Ld

n=1, and Φ = [φ1 · · ·φV ]
be the topic word matrix with V × K dimensions. We use
Θ = [θ1 · · · θD] to denote the D×K document topic matrix.
The inference process of LDA is to obtain the posterior
distribution of latent variables (Θ,Φ,Z) given observations
C and hyperparameters α and β. Collapsed Gibbs Sam-
pling (CGS) integrates out (Θ,Φ) through conjugacy and
iteratively samples zdn for tokens from the following full
conditional distribution:

p(zdn = k|tdn = w,Z¬dn, C¬dn) ∝ C¬dnwk + β

C¬dnk + V β
(C¬dndk + α) (1)

whereCdk is the number of tokens that are assigned to topic
k in document d; Cwk is the times that word w is assigned
to topic k; Ck =

∑
w Cwk =

∑
d Cdk. The superscript or

subscript ¬dn represents that zdn or tdn is excluded from
the count value or collections. Moreover, we use Cw to
represent the V × K matrix formed by all Cwk and Cd

to stand for the D × K matrix formed by all Cdk. Cw[w, ]
and Cd[d, ] represent the particular rows indexed by w and
d. Fig. 1 gives a simple example for a corpus with three
documents.

Core Operation. During the inference phase of LDA,
CGS iteratively assigns topics for tokens in C. For one token,
it calculates out all probabilities for K topics according to
Eq. 1 and then randomly picks a new one. We call this pro-
cess the core operation. This induces an O(K) computation
complexity per token and is very inefficient for applications
with massive tokens and large value of K. For more details,
readers can refer [21]. After burn-in, CGS is able to generate
samples that follow the posterior distribution p(Z|C, α, β).
We can use these samples to estimate the distribution of
Z, Θ and Φ, which allow us to understand the semantic
information of documents and words.

The process of Gibbs sampling is to run many, often
tens or hundreds of, epochs over the dataset. Each epoch
executes the core operation to sample its topic assignment
for each token and estimates the distribution of Z, Θ and Φ
using the generated samples.

Algorithm 1: Metropolis-Hastings algorithm

Input : p(x), q(x), number of steps M
Initialize x(0) ∼ q(x)
for i← 1 to M do

Propose xcand ∼ q(x(i)|x(i−1))

Acceptance rate π = min{1, p(x
cand)q(x(i−1)|xcand)

p(x(i−1))q(xcand|x(i−1))
}

if Uniform(0,1) ≤ π then x(i) = xcand

else x(i) = x(i−1)

2.2 Metropolis-Hastings

Directly sampling from probability distribution of Eq.1 is
expensive. Here we describe an efficient method to reduce
the sampling complexity, which is called Metropolis-Hastings
(MH) algorithm.

Let p(x) be the target distribution we want to draw
samples from. MH method constructs a Markov chain with
an easy-to-sample proposal distribution q(x). Starting with
an arbitrary state x(0), MH repeatedly generates samples
from the proposal distribution x(i) ∼ q(x(i)|x(i−1)) at each
step i, and updates the current state with the new sample
with an acceptance rate π = min

{
1, p(x(i))q(x(i−1)|x(i))

p(x(i−1))q(x(i)|x(i−1))

}
.

Algorithm 1 presents the detail of Metropolis-Hastings.
We call the hyperparameter M an MH steps. Under certain
technical condition, q(x(i)) converges to p(x) as i → ∞,
regardless of x(0) [22]. Gibbs sampling is a special case of
Metropolis-Hastings.

3 SAMPLER SELECTION OVER LDA
We study the system tradeoff of four recently published
samplers over LDA. We start by presenting a taxonomy of
four existing samplers for LDA, all of which were published
recently. We study the system tradeoff of different samplers
over LDA. We start by presenting a taxonomy of four
existing samplers for LDA, all of which were published
recently.

3.1 Anatomy of Existing Samplers

Existing samplers can be classified into two categories ac-
cording to the optimizations they use to reduce the sam-
pling complexity: (1) SA samplers, including AliasLDA and
F+LDA, exploit the sparse structure of Cd or Cw; and
(2) MH samplers, including LightLDA and WarpLDA, use
Metropolis-Hastings method to scale to a large number of
topics. We study their tradeoff with the following experi-
ment setup.

Settings. We implement all samplers under the same
code base. For fair comparison, we optimize all these tech-
niques and they are faster than all their original open-source
implementations1. Because samplers in the original open-
source codes use different implementations, e.g., different
hash table implementations. In our code base, we use the
same implementation in all samplers, and optimize them
with more efficient data structures, like using array instead
of the hash table in WarpLDA. All experiment results that

1. https://github.com/Microsoft/LightLDA,http://bigdata.ices.utexas.edu/
software/nomad/,https://github.com/thu-ml/warplda
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Fig. 2. Effects of document length, word frequency, and K on the performance of samplers.

we report are on a single machine and all samplers are
parallelized with 16 threads.

Metrics. We measure the performance by the wall-clock
time a sampler requires to converge to a given log likelihood
value. We vary the number of topics and use datasets that
have different characteristics to measure each sampler’s
performance.

Datasets. We use three different datasets to illustrate the
tradeoff. One key characteristic turns out to be the length
of a document, and the document length distribution is
showed in Figure 2(a). We see that these datasets have
different length distribution— the PubMED dataset consists
of many short documents whose length is less than 200,
while the NYTimes dataset contains both short documents
and long documents whose length can vary from 100 to
2000. For the Tencent dataset (the one from our industry
partner), most of the tokens are from long documents with
length larger than 1000—about 24% of documents have a
length over 1000, which contains more than 76% of all
tokens. Furthermore, the word frequency of documents
usually follows power-law. The detailed statistics of the
three datasets are listed in Table 1.

3.1.1 Sparse-Aware (SA) Samplers

AliasLDA and F+LDA decompose the probability for each
token (Eq. 1) into two parts: Cdk

Cwk+β
Ck+V β and α Cwk+β

Ck+V β . When
Cdk (Cd) is sparse, the sampler can skip those with zero
Cdk, thus lowering the complexity. The difference between
these two algorithms is the different data structures they use
to perform sampling—AliasLDA uses the Alias table [23],
while F+LDA uses the F+ tree.

Besides above decomposition method, Eq. 1 can also be
divided in a different way. The above two parts become
Cwk

Cdk+α
Ck+V β and β Cdk+α

Ck+V β . Under this new decomposition,
SA samplers can skip zero elements when Cwk (Cw) is
sparse.

The above two decomposition methods for SA samplers
imply two different data accessing order. We named them

word-first order and doc-first order respectively. With the
doc-first order, the sampler draws topics for all tokens in
one document before turning to another, while with the
word-first order, the sampler draws topics for all tokens
associated with one word at one time. As briefly described,
the different orders utilize the sparsity of different data
structures, like Cd or Cw.

Results. Fig. 2(b), 2(c), and 2(d) show the results for
different number of topics K. In these three experiments,
SA samplers are executed in word-first order. We can see
that F+LDA is consistently faster than AliasLDA over all
datasets and various values of K. The relative performances
of AliasLDA and F+LDA are different across different
datasets. Specifically, the gap becomes larger on the Tencent
dataset, while it is much smaller on the other two datasets.
This is because AliasLDA requires both traversal access and
random access for Cd matrix, while F+LDA only requires
traversal access. Since Cd is stored in sparse format—which
aims to reduce memory cost—the latency of random access
increases with more items in one document due to the
increased conflicts in the hashtable.

Fig. 2(f), 2(g), and 2(h) show the results for different
number of topics K and different word frequencies of
datasets. Here we run SA samplers through the doc-first
order. Moreover, we split the NYTimes dataset accord-
ing to the frequency of words. Specifically, we divide the
original datasets into four subsets, where each one con-
tains words belong to different frequency ranges, including
{[0, 2k), [2k, 10k), [10k, 30k), [30k, 100k)}. Then we run SA
samplers over all these subsets. We see that F+LDA is faster
than AliasLDA over all datasets when K is large, and it has
comparable efficiency with AliasLDA when K is small (e.g.,
K=100). The gap of performance is still caused by the access
speed of data structures employed by them.

3.1.2 Metropolis-Hastings (MH) Samplers

LightLDA and WarpLDA draw samples from two proposal
distributions — qdoc ∝ Cdk + α and qword ∝ Cwk+β

Ck+β —
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alternatively, and accept their proposals based on the accep-
tance condition of Metropolis-Hastings. These two samplers
are different in their access order for the in-memory data
structures—WarpLDA separates the access of tokens into
two passes, where each pass only accesses Cw or Cd,
respectively, in order to reduce random access.

Results. Fig. 2(b), 2(c), 2(d) show the results of MH
Samplers for different kinds of datasets. We see that
WarpLDA is consistently faster than LightLDA. This is
because WarpLDA effectively eliminates the amount of ran-
dom accesses. The performance gap is influenced by the size
of the vocabulary |V| — the more words the corpus has,
the more random accesses will be incurred by Cw. For the
PubMED dataset, which has the largest vocabulary, the per-
formance gap between WarpLDA and LightLDA is largest;
on the other hand, since the Tencent dataset only contains
88,916 distinct words in its vocabulary, this performance gap
is relatively small.

Fig. 2(f), 2(g), and 2(h) show the results of MH Samplers
for different number of topics K and different word fre-
quencies of datasets. We see that WarpLDA is still faster
than or at least comparable with LightLDA. This is also
because WarpLDA eliminates the amount of random access.
In addition, the datasets generated by splitting NYTimes
have relatively small vocabulary sizes, the performance gap
between WarpLDA and LightLDA is not significant.

3.2 Tradeoff: SA vs. MH Samplers

We now describe the system tradeoff between SA and
MH samplers. Because in our experiments F+LDA and
WarpLDA always dominate others, we focus on the tradeoff
between them.
Summary of the Tradeoff

Length of Document Ld. The length of documents turns
out to be an important axis in the tradeoff when SA sam-
plers run following the word-first order. On datasets with
many short documents, like PubMED, F+LDA is faster than
WarpLDA—by up to 2.8×when K = 16k; On datasets with
many long documents, like Tencent, WarpLDA is faster than
F+LDA— by up to 1.7× when K = 16k.

Frequency of Word Lw. The frequency of words presents
another important factor in the tradeoff when SA sam-
plers run following the doc-first order. On datasets con-
taining many low-frequency words, like subset with word
frequency ranging from 0 to 2k, F+LDA is faster than
WarpLDA—by up to 3.5× when K = 1k; On datasets
with many high-frequency words, WarpLDA is faster than
F+LDA—by up to 4.7× when K = 16K.

Number of topics K. The number of topics also plays
a major role in the tradeoff. When the number of topics
increases—e.g., from 1k to 16k on Tencent— WarpLDA
becomes faster compared with F+LDA; Similarly, when the
number of topics increases on PubMED, F+LDA becomes
faster compared with WarpLDA. For doc-first experiments,
F+LDA is faster than WarpLDA on all subsets when K =
100. When the number of topics increase—e.g. 1k and 16k,
WarpLDA shows better performance for subsets with high-
frequency words.

Analysis. The above tradeoff can be explained with
the following analytic model. To generate one sample in

WarpLDA, the Metropolis-Hastings sampler needs to decide
whether to accept a sample or not. Let π be the acceptance
rate, WarpLDA requires, in expectation, 1

π samples for one
sample to be accepted. On the other hand, F+LDA does
not have this overhead. However, to generate each sample,
the computational complexity of F+LDA is O(Kd) in word-
first order, where Kd, the number of non-zero elements of
Cd, is bound by the number of topics K and the length
of a document Ld, or O(Kw) in doc-first order, where Kw,
the number of non-zero elements of Cw, is bounded by the
number of topics K and the frequency of word Lw. On the
other hand, WarpLDA incurs O(1) complexity to propose
each sample.

We can now see the tradeoff—when K, Ld, and Lw are
small, WarpLDA is slower because of its 1

π overhead; oth-
erwise, F+LDA is slower due to its overhead in generating
each sample.

Figure 2(e) further provides a quantitative illustration of
the tradeoff. We define a complexity ratio λ = Kdπ as the
ratio between the complexity of F+LDA and WarpLDA. As
expected, on datasets where F+LDA is faster, λ is smaller.
This is consistent with the empirical result illustrated in
Figure 2(e).

3.3 Hybrid Sampler
The above tradeoff raises a natural question— Can we build
a hybrid sampler that marries both SA and MH sampler? In-
tuitively, this is trivial—just run “short” documents with
F+LDA and “long” documents with WarpLDA in word-first
order, or run “rare” words with F+LDA and “common”
words with WarpLDA in doc-first order. In practice, how-
ever, there are two technical questions: (1) how to decide
which document is long enough or word is common enough to
“qualify” for WarpLDA; and (2) how to balance an MH sam-
pler and an SA sampler, which have different convergence
speeds. For the first question, we develop a very simple rule-
of-thumb based on the study of our tradeoff. The second
question is more challenging and ties to an open question
in the mixing theory of two Markov chains. Inspired by
classic statistical theory on a simpler underlying model, we
develop a simple heuristics that works well across all of our
datasets.

3.3.1 Sampler Selection Strategy
The first step is to design a rule-of-thumb to choose between
two samplers. We focus on the combination of F+LDA and
WarpLDA, as these two samplers dominate consistently
faster than AliasLDA and LightLDA in our tradeoff study.

Sampling Complexity. For F+LDA in word-first order to
generate one sample, it needs to traverse the non-zero items
inCdk, whose size is bounded byK and Ld. And in doc-first
order, it traverses the non-zero items in Cwk, whose size is
bounded by K and Lw. Thus, the sampling complexity of
F+LDA is

Cf+ = O(min(Ld,K)) or O(min(Lw,K)).

On the other hand, since Metropolis-Hastings method
requires mix time for each sample, the complexity of
WarpLDA is

Cwarp = O(n),
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where n is the steps to achieve mix.
The technical challenge is how to estimate n, whose

value not only depends on the input datasets, but also
changes across iterations. In theory, estimating the mixing
time of the underlying MCMC chain for general factor
graphs is a problem that has been around for decades.
With this in mind, we resort to a simple heuristics that is
motivated by the empirical observation from our study.

Heuristics 1 (word-first order). Given a document dwith
length Ld and topic number K, if K ≤ S or Ld ≤ S
choosing F+LDA; otherwise, choosing WarpLDA. S is a
threshold value that depends on the implementation and
properties of the dataset.

Heuristics 2 (doc-first order). Given a word w with
frequency Lw and topic number K, if K ≤ S or Lw ≤ S
choosing F+LDA; otherwise, choosing WarpLDA. S is a
threshold value that depends on the implementation and
properties of the dataset.

3.3.2 Balancing Two Chains
One surprising observation is that the above heuristics
itself is not enough for a hybrid sampler that outperforms
both F+LDA and WarpLDA. The fundamental reason is
that two Markov chains underlying F+LDA and WarpLDA
do not converge with the same speed. Specifically, all samples
from F+LDA will be accepted, however this is not the case
for WarpLDA. Intuitively, this means that a naive hybrid
sampler would generate more samples for tokens belonging
to F+LDA per epoch than WarpLDA.

Theoretical Understanding The above observation
raises a fundamental question: What is the relationship be-
tween the mixing time of a Gibbs sampler (F+LDA) and a
Metropolis-Hastings (WarpLDA) sampler for the same underly-
ing distribution? If we magically know the ratio between their
mixing time, we could just use this number to balance these
two chains.

Unfortunately, a general treatment of this question has
existed for decades and is still under intensive study by the
theoretical computer science and mathematics community.
However, there are theoretical results that can be used to
inspire our practical heuristics.

We know that the mixing time of these two chains is not
too different, at least for the Ising model:
Lemma 3.1. [22](Levin, Peres, & Wilmer 2008, Example

13.18) For a graph with vertex set V , let π be the Ising
probability measure. Let γ be the spectral gap of the
Gibbs chain and γ̃ be the spectral gap of the Metropolis
chain using the base chain, we have γ ≤ γ̃ ≤ 2γ, where
γ is related to the mixing time by the following lemma

Lemma 3.2. [22](Levin, Peres, & Wilmer 2008, Theorem 12.3)
Let P be the transition matrix of a reversible, irreducible
Markov chain with state space Ω, and π be the under-
lying probability measure. Let πmin = minx∈Ω π(x) and
γ the absolute spectral gap (equals to the spectral gap
when the chain is “lazy”), we have the mixing time

tmin(ε) ≤ log(
1

επmin
)
1

γ
(2)

The above two lemmas inspired the design in two ways.
First, we know, at least intuitively, whatever scheme we

use to balance these two chains, that scheme should not be
“too extreme” (these two chains are off by a constant factor
anyway). Second, the mixing time is likely to be linear (or
inverse linear) to the constant that we will use to balance
these two chains. Inspired by these, our simple heuristics is
as follows:

Heuristics 3. For each epoch, the MH steps for the
WarpLDA is set to d 1

π e, where π is the acceptance rate for
the last epoch.

The intuition behind this heuristics is simple—just use
the empirical acceptance rate 1/π as the proxy for the ratio
of spectral gap γ̃

γ (In extreme cases where all MH samples
are accepted (π = 1), MH becomes Gibbs, and therefore
γ̃
γ = 1

π in this extreme case.)

4 SAMPLERS FOR LDA VARIANTS

After designing the hybrid sampler over LDA, a natural
question is Can we use the hybrid sampler to improve the perfor-
mance of LDA variants? The answer is yes, and we should
apply SA and MH sampler to LDA variants. According
to the above experiments, F+LDA and WarpLDA always
dominate other samplers, therefore, we focus on applying
F+LDA and WarpLDA to LDA variants. For simplicity, in
the context of LDA variants, SA sampler stands for F+LDA
and MH sampler means WarpLDA.

Considering that the tradeoff in hybrid sampler has been
fully discussed in the previous section. Here we only elab-
orate the rules of applying SA and MH samplers, and the
corresponding revisions of LDA variants, including STM,
TOT, and CTM.

4.1 The Rules of Applying SA and MH Samplers

All the full conditional distributions (Eq. 1, 3, 4, 5) of LDA
and its variants have factorCdk+α orCwk+β, for simplicity,
the distributions can be denoted as (Cdk + α)F (w, k) or
(Cwk +β)F (d, k). Since F (w, k) and F (d, k) are similar, the
following discussion takes F (w, k) as example.

Rule for SA sampler. When using the SA sampler
to improve sampling performance, the key technique is
applying F+Tree to maintain F (w, k) for each topic k, and
decompose the probability into CdkF (w, k) + αF (w, k) to
skip those with zero Cdk. To correctly run SA sampler, the
following condition must hold: Given any two topics k1, k2,
F (w, k1) and F (w, k2) should share no common variables to be
calculated. Taking LDA as an example, F (w, k) = Cwk+β

Ck+V β ,
where Cwk and Ck are variables, V and β are constants.
It is easy to figure out that F (w, k1) and F (w, k2) share
no common variables. This is because Cwk1 and Cwk2 are
different, so are Ck1 and Ck2 .

Rule for MH sampler. In Section 3.1.2 we have intro-
duced that the MH sampler has to draw samples from two
proposal distributions — qdoc and qword, and accept their
proposals based on the acceptance condition of Metropolis-
Hastings. To apply the MH sampler, we need to guarantee:
1) qdoc is independent of words and 2) qword is independent
of documents. On basis of this rule, we can simply set qdoc

to be (Cdk + α) and qword to be F (w, k).
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4.2 Samplers for Supervised Topic Model

Compared with LDA, Supervised Topic Model (STM) [11]
adds a response variable to each document. It models doc-
uments and response variables in a jointly way in order to
explore topic distributions more precisely, with predicting
the labels of new documents at the same time.

The difference of generating one document between
STM and LDA is that STM needs to draw one response
variable y from a normal distribution after drawing all
words of this document. Besides that, other processes re-
main the same as LDA. The generative process of STM can
be summarized as follows:

1) Draw topic distribution θd ∝ Dir(α).
2) For each token:

a) Draw topic assignment zdn ∝Mult(θd).
b) Draw word tdn ∝Mult(φzdn).

3) Draw response variable y ∝ N (ηT zd, σ
2),

where zd = 1
Ld

∑Ld
n=1 zdn is the empirical topic fre-

quency and zdn is of one-hot representation.

To inference an STM model, we need to obtain the
posterior distribution of latent variables (Θ,Φ,Z) as well
as the parameters (η, σ2) of the normal distribution for
response variables. The EM algorithm is employed here to
accomplish the inference process. In each iteration of this
algorithm, there are two steps:

1) Applying CGS to sample zdn for each token from the
following full conditional distribution:

p(zdn = k|tdn = w, η, σ2,Z¬dn, C¬dn) ∝ (C¬dndk + α)

C¬dnwk + β

C¬dnk + V β
exp(− 1

2σ2
[
ηk
Ld

(2ηT z¬nd − 2yd −
ηk
Ld

)])

(3)

2) Calculating the optimal value of η to maximize the log-
likelihood log p(Z,W,Y|α, β, η, σ2) by estimating the
expectation of Z using the sampling result zdn.

log p(Z,W,Y|α, β, η, σ2) ∝
D∑
d=1

log N (yd|ηT zd, σ2).

We denote the optimal value of η as η∗ =
(ZTZ)−1ZTY.

SA sampler. The distribution of STM model in Eq. 3
almost conforms to (Cwk + β)F (d, k) if we set F (d, k)
to be Cdk+α

Ck+V β exp(− 1
2σ2 [ ηkLd

(2ηT z¬nd − 2yd − ηk
Ld

)]), so we
can optimize Gibbs sampling with the sparsity of word
distribution in the doc-first order.

However, the above F (d, k) does not satisfy the rule of
applying SA sampler. This is because z¬nd makes F (d, k)
shares common variables over k. Specifically, z¬ndk equals
C¬ndk /Ld, and the values C¬ndk of all k are required by each
F (d, k). Therefore, F+Tree in F+LDA cannot be used to
maintain the values F (d, k) directly.

To eliminate the shared variables, we borrow the idea
of accepting a sample with certain probability from MH
sampler, and propose an approximation of F (d, k).

Assume z0
d is the value when document d to be sampled,

we revise the Eq. 3 by using z0
d to replace z¬nd , then the

approximated F (d, k) is

F̃ (d, k) =
Cdk + α

Ck + V β
exp(− 1

2σ2
[
ηk
Ld

(2ηT z0
d − 2yd −

ηk
Ld

)])

To remedy the deviation between F (d, k) and F̃ (d, k),
we add an accept step where acceptance rate is:

min(1, exp{ 1

σ2

ηk − ηk0
Ld

η(z¬nd − z0
d)})

With above revisions, we can consider z0
d as constants in

the sampling step and apply F+LDA sampler to STM model.
MH Sampler. With the new version of full conditional

distribution (Cwk + β)F̃ (d, k), we can set qword ∝ Cwk + β
and qdoc ∝ F̃ (d, k), and the acceptance rates are πword =

min(1, F (d,k)
F (d,k0) ) and

πdoc = min(1,
Cwk + β

Cwk0 + β
exp{ 1

σ2

ηk − ηk0
Ld

η(z¬nd − z0
d)}).

Therefore, the sampler can draw topics in average O(1)
complexity.

4.3 Samplers for Topics over Time Model
Topics over Time model (TOT) [12] plays an important
role on discovering topic evolution over time. This model
assumes a continuous distribution over time associated with
each topic. Meanwhile, topics are responsible for generating
both observed timestamps and words. Under TOT model,
each document arises from the following generative process:

1) Draw topic distribution θd ∝ Dir(α).
2) For each token:

a) Draw topic assignment zn ∝Mult(θ).
b) Draw word tdn ∝Mult(φzdn).
c) Draw timestamp sdn ∝ Beta(ψzn,1, ψzn,2).

where Beta(ψzn,1, ψzn,2) represents Beta distribution with
hyperparameter Ψ=(ψzn,1, ψzn,2).

Different from STM which draws one response variable
for each document, TOT draws a timestamp for each token
from a Beta distribution with hyperparameter Ψ based on
the associated topic assignment.

The inference algorithm for TOT is also an EM based
algorithm which conducts sampling and estimating param-
eters iteratively.

1) In the sampling step, we apply CGS which integrates
out Θ and Φ through conjugacy to sample zdn for each
token from the full conditional distributions.
p(zdn = k|sdn,Z¬dn, C) ∝

(C¬dndk + α)
C¬dnwk + β

C¬dnk + V β

s
−1+ψzdn,1

dn (1− sdn)−1+ψzdn,2

B(ψzdn,1, ψzdn,2)
(4)

where B(α, β) = Γ(α)Γ(β)/Γ(α+ β).
2) In the estimating step, we calculate the opti-

mal value of Ψ to maximize the log likelihood
log p(Z,W,S|Ψ, α, β).

log p(Z,W,S|Ψ, α, β) ∝
D∑
d=1

Ld∑
i=1

log Beta(tdi|ψzdi,1, ψzdi,2)

ψz,1 = sz(
sz(1− sz)

S2
z

− 1), ψz,2 =
1− sz
sz

ψz,1
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where sz and S2
z indicate the sample mean and the

biased sample variance of the timestamps belonging to
topic z, respectively.

SA sampler. To adapt SA sampler to TOT model, we
observe that the distribution of TOT in Eq. 4 has the form
(Cwk + β)F (d, k) where

F (d, k) =
Cdk + α

Ck + V β

sdi
ψk,1−1(1− sdi)ψk,2−1

B(ψk,1, ψk,2)
.

Note that the timestamps sdi of one document are the
same values and can be considered as a constant sd of that
document. Therefore, we can optimize Gibbs sampling with
the sparsity of word distribution in the doc-first order.

MH Sampler. Adapting MH sampler to TOT model,
we set proposal distributions qword ∝ Cwk + β and
qdoc ∝ F (d, k), and the acceptance rates are πword =

min(1, F (d,k)
F (d,k0) ) and πdoc = min(1, Cwk+β

Cwk0
+β ).

4.4 Samplers for Correlated Topic Model
Correlated Topic Model (CTM) [13] captures the correlation
between topics by adopting logistic normal distribution for
topic distribution. Given one document d, the generative
process is listed as follows:

1) Draw topic distribution θd ∝ N (µ,Σ).
2) For each token:

a) Draw topic assignment zdn ∝Mult(f(θd))
where f(θi) = exp(θi)/

∑
j exp(θj).

b) Draw word tdn ∝Mult(φzdn).

In CTM, the topic distribution θd is drawn from a nor-
mal distribution with hyperparameters µ and Σ. Because
normal distribution N (µ,Σ) and multinomial distribution
Mult(f(θd)) are not conjugate, it is impossible to integrate
out Θ for the topic distribution. Therefore, we can only
apply the original Gibbs sampling rather than applying Col-
lapsed Gibbs Sampling algorithm for sampling Z. To sample
the continuous random variable Θ, we apply Stochastic
Gradient Langevin Dynamics (SGLD) algorithm [24]. Since
the documents are independent with each other in SGLD,
we implement the SGLD in data parallel, i.e., in each iter-
ation, SGLD computes ∆θi and updates θi for a batch of
documents in parallel.

Finally, with Gibbs sampling, we iteratively sample Z
and Θ from the following distributions:

1) Sample Z in the similar way with LDA’s:

p(zdn = k|tdn,Z¬dn, C¬dn,Θ) ∝ C¬dnwk + β

C¬dnk + V β
eθdk (5)

2) Sample Θ by SGLD algorithm:

p(Θ|Z, C) ∝
D∏
d=1

{N (θd|µ,Σ)

Ld∏
i=1

eθd,zdi∑
k e

θd,k
}

SA sampler. The distribution of CTM in Eq. 5 also
conforms (Cwk + β)F (d, k) where

F (d, k) =
eθdk

Ck + V β
,

so we can adapt SA sampler to CTM model with the doc-
first order.
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Fig. 3. The high-level abstraction of Sys-TM.

MH Sampler. Similar with previous two adaptions,
we set proposal distributions qword ∝ Cwk + β and
qdoc ∝ F (d, k), and the acceptance rates are πword =

min(1, F (d,k)
F (d,k0) ) and πdoc = min(1, Cwk+β

Cwk0
+β ).

4.5 Sampling Complexity of LDA variants
Due to the “rule for SA sampler”, F+LDA runs in the doc-
first order over LDA variants. Thus, the sampling complex-
ity of F+LDA is

Cf+ = O(min(Lw,K)).

On the other hand, unlike LDA (Section 4.3 in [19]), the
topic assignment of LDA variants cannot use Random po-
sitioning, and needs Alias sampling to achieve O(1) time
to propose a sample, which entails O(K) initialization com-
plexity for each document in every iteration. Therefore, the
complexity of WarpLDA is

Cwarp = O(n+
K

Ld
),

where n is the steps to achieve mix.

5 SYS-TM: A TOPIC MODELING SYSTEM

In this section, we present the details of our open-source
topic modeling system, Sys-TM2, which is carefully imple-
mented with previous technique contributions. The system
is designed based on a general topic modeling framework,
which integrates the hybrid sampler to guarantee the high-
performance of topic models across different workloads. On
top of the framework, we have implemented all the topic
models discussed previously — LDA, STM, TOT and CTM.
In addition, Sys-TM allows users to implement their own
high-performance topic models with friendly interfaces.

5.1 Architecture of Sys-TM
Figure 3 shows the high-level abstraction of Sys-TM. It
mainly consists of three components: Corpus, Model, and
Result. The details of each component are described as
below.

Corpus A Corpus is a set of documents which contains
a number of tokens. Inside a Corpus, each document and
each token have an unique integer identifier, and everything
is stored with those integer IDs. Specially, tokens are stored

2. https://github.com/DMALab/Sys-TM
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in either doc-first order or word-first order, which is deter-
mined by the user so that the inference algorithm can tra-
verse the corpus in a proper order to achieve the best cache
efficiency. Refer to our previous work [20] for the detailed
data structures for long or short docs which guarantees the
high performance no matter what the corpus or samplers
are. To support LDA variants, documents can be further
labeled with additional information such as timestamps or
category IDs.

Model A Model is a prototype of topic models. The
prototype can also be called basic model. The basic model
records a set of parameters and topic-word counters that can
be used to inference new corpus, and it provides several
interfaces: Train(Corpus), Inference(Corpus), SaveModel(path),
and LoadModel(path).

A customized topic model can be instantiated by imple-
menting the interfaces with its own model parameters and
inference algorithms. To facilitate customization, in Sys-TM
we implement the prototype as an efficient hybrid sampler
template. The sampler template integrates all the technique
contributions, and users can easily write a new sampling
algorithm by implementing interfaces of defining related
distributions in the template, i.e., filling up the formulas
F (d, k) or qword in a new model. In Sys-TM, we have im-
plemented samplers for LDAModel, STMModel, TOTModel
and CTMModel on the basis of this template. To train a topic
model, users can create a new model instance, specify the
values of model parameters, and invoke Train() interface
over a corpus. After training, you can get the topic-word
distributions, which is the trained model. Typically, the
topic-word and doc-topic distributions are stored as counter
matricesCwk andCdk as described in Section 2. Considering
sparsity, we treat Cwk (in doc-first order) or Cdk (in word-
first order) as CSC sparse matrix. Then, users can apply
the trained model on a new Corpus to inference doc-topic
distributions or save the trained model for future usage.
In addition, users can do incremental training in Sys-TM.
This means that users can update the existing trained model
with new corpus for online training [25]. What’s more, the
Train and Inference methods are implemented with high
performance hybrid samplers as we have mentioned before.

Result A Result keeps doc-topic distributions after the
training or inference process. Users can easily access the
results or save them into a file.

5.2 Topic Modeling Framework

Considering that most of topic models do sampling from
a posterior distribution and then estimate parameters, we
design the topic modeling framework for Sys-TM follow-
ing the computation architecture in expectation maximiza-
tion (EM) algorithm. More specifically, our topic modeling
framework has two steps: (1) Sampling step: it samples a
value from a posterior distribution; (2) Estimating step: it
estimates parameters with sampled values. To clarify, the
estimating step can be omitted if there are no parameters to
be estimated, like LDA and CTM.

In a sampling step, an algorithm usually samples topics
for all tokens in a given document set, and also sample other
model-specific variables from continuous distributions, like
Θ in STM. To sample topics, we apply our hybrid samplers

by considering the sparsity of a model. We split the whole
document set into two parts based on document lengths
or word frequencies and then sample tokens in the two
parts separately with F+LDA sampler or WarpLDA sam-
pler. To sample continuous variables, we apply SGLD al-
gorithm [26]. In an estimating step, the algorithm computes
the optimal parameter values to maximize the log likelihood
of current sampling results. The algorithm repeats sampling
step and estimating step until the log likelihood converges.

To implement a customized topic model on top of our
framework, users only need to extend basic model by
defining model specific parameters, like the traverse order
of F+LDA sampler, and implementing their own model-
specific functions. These functions include sampling vari-
ables from continuous distributions, estimating parameters,
and user-defined parts in hybrid sampler.

6 EVALUATION

In this section, we report experimental results of three parts:
(1) we show results validating our technical contribution
of system tradeoffs; (2) we evaluate our hybrid samplers
and compare them with state-of-the-art samplers over LDA
and its variants; (3) we compare our Sys-TM with lightLDA,
Gensim library and other open-sourced implementations of
LDA variants.

6.1 Experimental Setup
Experiment Setting. We conduct all single-machine exper-
iments on a server which has an Intel Xeon E5530 @ 2.4G
CPU with 16 cores, 74GB DDR3 memory and 10×2TB SATA
hard disks. Following prior arts, we set the hyperparameter
of Dirichlet distribution α = 50.0

K and β = 0.01 for all the
following experiments. All samplers are re-implemented in
Sys-TM.

TABLE 1
Dataset Statistics.

dataset #docs #words #tokens
average
doc
length

average
word
frequency

NYTimes 300K 102660 99M 331 964
PubMED 8.2M 141044 737M 90 5225
Tencent 2.5M 88916 1.26B 504 14170
BaiKe 2.8M 98234 418M 148 4225

PubMED* 300K 97994 19M 88 193
BaiKe* 1M 88834 148M 148 1666

Datasets. Table 1 summarizes the datasets we used
to evaluate the speed of samplers. They are NYTimes,
PubMED, Tencent, and BaiKe. Compared with the other
three datasets, BaiKe is a dataset with many long documents
as well as many short documents. NYTimes and PubMED
are public datasets3, while the other datasets are from our
industry partner. Due to the high consumption of STM
and CTM models when K is large, we further randomly
sample 300K documents from PubMED and 1M documents
from BaiKe, and generate two small datasets, PubMED* and
BaiKe*.

3. https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-
words/
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Fig. 4. Tradeoff points of Ld, Lw and K of LDA, STM, TOT, CTM models.

Metrics. We measure the quality of a topic model by
the log joint likelihood, and count the wall-clock time for
a method to reach a given log likelihood value in order
to compare their performance. In each experiment, we stop
training and record the log likelihood value when the dif-
ference of values between two consecutive iterations is no
more than 0.1%.

6.2 System Tradeoffs

We now validate that all Ld, Lw, and K which forms a
tradeoff between SA and MH samplers in all four topic
models. We show the tradeoffs of Ld and K in LDA when
running SA with word-first order, and tradeoffs of Lw and
K in STM, TOT, and CTM when running SA with doc-first
order.

Tradeoff of Ld. To determine the tradeoff point of Ld
in LDA, we construct five datasets with different docu-
ment lengths by separating the Tencent. The first dataset
consists of documents with Ld ∈ [0, 0.2k), while the
second one contains documents with Ld ∈ [0.2k, 0.4k).
The lengths of documents for the other three datasets are
[0.4k, 0.6k), [0.6k, 1.2k), and [1.2k, 2k). We run F+LDA and
WarpLDA with K = 8000 on these five datasets and their
wall-clock time to reach the same convergent log likelihood
are shown in Figure 4(a). From this figure, we can see that
on dataset with Ld ∈ [0, 0.2k), F+LDA is 2× faster than
WarpLDA, while F+LDA is 2× slower than WarpLDA on
the dataset with Ld ∈ [1.2k, 2k). For the dataset containing
documents with Ld ∈ [0.4k, 0.6k), F+LDA and WarpLDA
present nearly the same performance. Therefore, in our
hybrid sampler, we use F+LDA for documents with length
less than 600 and choose WarpLDA otherwise.

Tradeoff of Lw. To determine the tradeoff point of Lw
in LDA variants, we construct seven datasets with differ-
ent word frequencies from NYTimes. The frequencies of
Lw for them are [0, 0.4k), [0.4k, 2k), [2k, 10k), [10k, 30k),
[30k, 100k), [100k, 300k) and [300k, 500k). We run F+LDA
and WarpLDA with K = 8000 in TOT model, K = 3000 in

STM and CTM model on these datasets and their wall-clock
times to reach the same convergent log likelihood are shown
in Figures 4(b), 4(c) and 4(d).

From the figure of TOT, we can see that on dataset with
Lw ∈ [0, 0.4k), F+LDA is 2× faster than WarpLDA, while
F+LDA is 4× slower than WarpLDA on the dataset with
Lw ∈ [30k, 100k). For the dataset containing words with
Lw ∈ [10k, 30k), F+LDA and WarpLDA present nearly the
same performance. CTM model has similar tradeoff with
TOT, while STM model has a much higher cross point. For
STM model, F+LDA is faster than WarpLDA in the first five
datasets (Lw < 100k), and WarpLDA eventually outper-
forms F+LDA with large Lw. This is because when Lw is
small, the cost of STM is dominated by the computation of
η∗, which is not influenced by the variable Lw.

Finally, in TOT and CTM samplers, we use F+LDA for
words with frequency less than 30k. Otherwise, we choose
WarpLDA. In STM sampler, the tradeoff point is 200k.

Tradeoff of K. To determine the tradeoff point of K
in LDA model, we evaluate both F+LDA and WarpLDA
on the Tencent dataset with K range from 100 to 1,000.
The wall-clock time to reach the same log likelihood value
is presented in Figure 4(e). We can see that F+LDA can
outperform WarpLDA when K is small, while WarpLDA
is faster when K becomes larger. The cross point happens
when K ' 600 in our experiments. Therefore, in our
implementation of the hybrid sampler in LDA model, we
use F+LDA when K is less than 600; otherwise, we use
WarpLDA.

To determine the tradeoff point of K in STM, TOT,
and CTM models, we evaluate both F+LDA and WarpLDA
on NYTimes dataset with K range from 100 to 8000. The
wall-clock time to reach the same log likelihood value is
presented in 4(f) 4(g) 4(h). For TOT and CTM models, we
observe results that F+LDA outperforms WarpLDA when
K is small and WarpLDA is better when K is large. For
STM model, F+LDA always outperforms WarpLDA. As
mentioned in the previous discussion of Lw, the cost of
STM is dominated by computing η∗ with small Lw, so
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TABLE 2
Time (seconds) for samplers of LDA variants to reach the same log likelihood. Note that * in column K&L indicates that PubMED* or BaiKe* is used.

dataset K& L MH SA hybrid K& L MH SA hybrid K& L MH SA hybrid
STM TOT CTM

Tencent
1k&1.1e9 4242 2568 2518 3k&7.2e9 5121 9892 3315 1k&-6.6e9 4404 10612 4169
2k&1.9e9 5518 3211 2854 5k&1.3e10 7436 23079 3979 2k&9.7e8 5632 13613 5139
3k&3.0e9 6776 4851 3457 8k&2.2e10 12492 50773 6167 3k&1.6e9 7642 18429 6569

PubMED
1k&1.2e9* 435 133 124 3k&1.3e11 11550 5748 5278 1k&1.6e8* 1103 923 829
2k&2.9e9* 666 145 192 5k&2.36e11 18150 7457 6286 2k&5.9e8* 1451 1619 1584
3k&4.8e9* 1144 432 322 8k&4.1e11 28195 4272 7742 3k&1.0e9* 2765 2025 2347

BaiKe
1k&7.2e9 6882 2022 3796 3k&3.6e10 5442 12332 3483 1k&-1.7e9* 4021 5008 3024
2k&2.0e10 7123 7533 3830 5k&6.7e10 8335 15970 4140 2k&-1.3e* 3053 10180 2296
3k&3.4e10 9991 13734 5371 8k&1.1e11 11792 12974 4153 3k&-1.1e9* 6681 16590 5188

TABLE 3
Time (seconds) for samplers of LDA to reach the same log likelihood.

dataset K& L SA MH hybridF+ Alias Light Warp

PubMED
1k&-6.6e9 2489 2865 11024 4400 2322
8k&-6.7e9 2851 3355 13045 7389 2212

16k&-6.8e9 3115 3580 15426 8957 2713

Tencent
1k&-9e9 3500 5108 3564 3087 2142
8k&-9e9 7746 11839 7500 4747 4341

16k&-9e9 9910 14072 7800 5894 5773

BaiKe 8k&-3.6e9 1893 2505 3308 2045 1158
16k&-3.6e9 2763 3065 6930 3792 1779

that the costs of one iteration of F+LDA and WarpLDA are
similar, but F+LDA needs fewer iterations than WarpLDA
to converge. Based on our experiment results, we set the
tradeoff points at 4000 in TOT model and 3000 in CTM
model, and STM has no tradeoff point of K.

6.3 The Performance of Hybrid Samplers

We now validate that advantages of our hybrid sampler.
Tables 3 and 2 give a summary of the performance for
all samplers by presenting their wall-clock time to a given
value of log likelihood. Due to the constrained space, we do
not list the results on NYTimes in the tables, and actually,
the results are similar to other datasets.

Hybrid sampler on LDA. The SA sampler in LDA model
runs in word-first order. We see that our hybrid sampler
outperforms the fastest existing samplers on all datasets.
On BaiKe, which contains both short documents and long
documents, our sampler can outperform both F+LDA and
WarpLDA by 1.7-2.1×. This is because our sampler is able to
choose the most appropriate sampler to use. For PubMED
dataset, our hybrid sampler is 2-3× faster than WarpLDA,
while having comparable performance to F+LDA. For Ten-
cent dataset, our hybrid sampler is 1.7× faster than F+LDA
and is comparable with WarpLDA. For the detailed analysis
of other samplers, please refer to Section 3.1.

Hybrid sampler on LDA variants. We test our hybrid
sampler on LDA variants, and the SA sampler runs in doc-
first order. The results in Table 2 show that our hybrid
sampler outperforms the fastest existing samplers on most
experiments. On Tencent and Baike dataset, which contain
documents with both low and high word frequency, our hy-
brid sampler can outperform both SA and MH sampler by
up to 2.7×. For PubMED dataset, our hybrid sampler is up
to 3.6× faster than MH sampler, while having comparable
performance to (or slightly slower than) SA sampler. On
the basis of complexity analysis in Section 4.5, the efficiency
of WarpLDA on LDA variants is related to the number of

TABLE 4
Time (seconds) comparison among Sys-TM, open-sourced F+LDA, WarpLDA,

LightLDA and Gensim.

K F+
LDA

Light
LDA

Warp
LDA Gensim Sys-TM

0.1k 495 525 271 12244 87
1k 547 1196 410 21848 186
3k 536 1335 431 >10hrs 209

topics and the length of documents. Specifically, when the
topic number is much larger than the document length,
the cost of initialization of WarpLDA cannot be omitted.
Therefore, on PubMED, whose average length of documents
is short (∼ 90), the hybrid sampler may not be the best one
with a large number of topics (e.g., K=2000). The results also
imply that there are complex influences of Ld, Lw and K for
the efficiency of hybrid sampler over LDA variants, and the
simple heuristics may fail to select the appropriate sampler.
However, due to the difficulty of mixing time estimation,
it is non-trivial to quantify the complex influences, and we
leave it as an open question.

6.4 End-to-End Performance of Sys-TM

In this section, we compare Sys-TM with popular open-
sourced Topic modeling libraries. All the experiments are
conducted on NYTimes with topic number 100, 1000 and
3000.

Table 4 shows the results of comparing Sys-TM with
four state-of-the-art LDA libraries, and they are LightLDA,
WarpLDA, F+LDA, and Gensim 4 on a single machine. For
Sys-TM, LightLDA, WarpLDA and F+LDA, we report the
wall-time of all samplers to achieve the same value of log
likelihood. The log likelihood values are -9.7e8, -9.8e8 and
-1.0e9 for K=0.1k, K=1K and K=3K, respectively. We can
see that WarpLDA performs the best among all three open-
source LDA algorithms and Sys-TM with hybrid sampler
can still have over 2× speed up. For Gensim, we find Sys-
TM is remarkably faster than Gensim by approximately
100∼150×. The main reason is that the complexity of hybrid
sampler in Sys-TM is much lower than that of Gensim.
Gensim uses variational inference, and it costs Ω(K) for
each token, where K is the number of topics, in one iter-
ation. While Sys-TM costs at most O(Kd), where Kd is the
average number of none-zero values in Cd which is much
smaller than K. Further, when WarpLDA is selected by our

4. https://github.com/Microsoft/LightLDA,
https://github.com/thu-ml/warplda, http://bigdata.ices.utexas.edu/
software/nomad/, https://radimrehurek.com/gensim/
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TABLE 5
Time comparison among Sys-TM and open-sourced STM, CTM and TOT.

K STM
Blei-lab

Sys-
TM

CTM
Blei-lab

Sys-
TM TOT Sys-

TM
0.1k �10hrs 902 �10hrs 878 �10hrs 853
1k �10hrs 1984 �10hrs 2545 �10hrs 1137
3k �10hrs 2991 �10hrs 5958 �10hrs 1439

hybrid sampler, the cost is reduce to only O(1) per token.
Besides, our carefully engineered implementation of Sys-TM
also boosts the improvement gains.

Table 5 shows the costs of running Sys-TM and open-
sourced LDA variants, including STM, CTM and TOT5. We
find that Sys-TM is extremely faster (�10×) than current
open sourced LDA variants. With topic number 100, 1000
and 3000, Sys-TM finishes computation around 1 hour,
while all the original versions can not finish in 10 hours.
This is not only because Sys-TM applies the hybrid sam-
pler which integrates state-of-the-art LDA samplers, but
also Sys-TM benefits from the carefully implemented data
structures.

7 RELATED WORK

Topic modeling is one of the most powerful machine learn-
ing technology that has been widely used in text mining,
network analysis, and many other domains. Topic models
are usually probabilistic models that give an unsupervised
approach to find hidden structures or semantics in gigantic
information. Early topic models include LSI [27], pLSI [28],
and Latent Dirichlet allocation (LDA) which is the most pop-
ular topic model currently in use. Afterwards, many topic
models have been proposed to enhance various aspects
of LDA. For example, D. Blei et al. proposed Correlated
Topic Model (CTM) [13] to discover correlations between
topics. They also proposed Supervised Topic Model (STM)
[11], Labeled LDA [29], and Dynamic Topic Model (DTM)
[30] to handle various kinds of information associated with
documents. Wang et al. proposed Topic over Time (TOT)
[12] to discover the popularity variations of topics over time.
Chang et al. proposed Relational Topic Model (RTM) [31]
to model relations or links between documents. Recently
on the basis of CTM, Correlated Gaussian Topic Model
(CGTM) [32] is proposed by leveraging external resources
to model the topic correlations, and NVCTM [33] uses
Centralized Transformation Flow to capture the correlations
among topics by reshaping topic distributions. In this paper,
we focus on providing a unified and efficient library for
implementing various topics models, like LDA, STM, CTM
and TOT.

Gibbs sampling is a popular method to inference prob-
abilistic models, which is also the most efficient one to
inference topic models. There are a range of Gibbs samplers
that have been proposed to reduce the sampling complexity
of LDA. SparseLDA [15] is the first to take advantage of
the sparse structure of Cd and Cw to achieve O(Kd +Kw)
sampling complexity. However, for a large dataset, the value
of Kw for popular words equals to K—AliasLDA [17] and

5. https://github.com/blei-lab/class-slda, https://github.com/blei-
lab/ctm-c, https://github.com/ahmaurya/topics over time

F+LDA [18] further reduces the complexity to O(Kd) by
factorizing the posterior distribution. LightLDA [9] pro-
poses an O(1) method by alternately sampling from two
simple proposals through MH method, while WarpLDA [19]
reorders the sampling operations from these two proposals
to reduce random memory access. Although the complexity
for one sampling operation is O(1) for them, we find that
they need more sampling operations to generate one sam-
ple, since the MH method requires mix time. FastLDA [34]
uses the skew property of Eq. 1 to calculate only a fraction
of the K topic probabilities per sampling operation. In this
work, we carefully studied the tradeoff among different
samplers, and proposed a hybrid sampler to select a proper
sampler based on the characteristics of datasets and the
models.

To scale up the training of LDA for large datasets, par-
allelization is also a good choice. All existing parallelization
methods divide documents into multiple partitions and
each worker conducts sampling operations. AD-LDA [35]
proposes an approximate sampling method where each
worker uses the stale version of the Cw matrix and requires
synchronization among all workers after each iteration.
PLDA [36] is an MPI and MapReduce implementation of
AD-LDA. PLDA+ [37] proposes to sample over word order
at each worker and then utilize the pipeline method to over-
lap the computation and communication. YahooLDA [10]
proposes a distributed key-value cache to share the Cw ma-
trix among different workers. However, it samples tokens
through the document order and requires maintenance of
one copy of Cw at each worker. NomadLDA [18] utilizes
the nomad token to perform asynchronous sampling while
guaranteeing there will be no update conflicts. With regard
to the dynamic latent topics, Clustered Latent Dirichlet Al-
location (CLDA) [38], [39] significantly accelerates DTM to
discover dynamic topics in a large collection of documents
via parallel computing.

8 CONCLUSION

In this paper, we systematically studied four topic models
and their sampling-based inference algorithms. Then we
studied the state-of-the-art samplers for LDA and discov-
ered a tradeoff between the Sparse-Aware sampler and
Metropolis-Hastings samplers. Based on this tradeoff, we
developed a hybrid sampler that employs different sam-
plers for documents of different lengths and different word-
frequency. We further adapted the hybrid sampler of LDA
to inference other topic models. Finally, we built a fast
and general topic modeling system, named Sys-TM, which
integrates the novel hybrid sampler and is carefully imple-
mented.
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