
Memory-Aware Framework for Efficient
Second-Order RandomWalk on Large Graphs

Yingxia Shao
⋆
, Shiyue Huang

§
, Xupeng Miao

§
, Bin Cui

§
, Lei Chen

△

⋆
Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, BUPT

§
School of EECS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University

△
Hong Kong University of Science and Technology

shaoyx@bupt.edu.cn, {huangshiyue, xupeng.miao, bin.cui}@pku.edu.cn, leichen@cse.ust.hk

ABSTRACT
Second-order random walk is an important technique for

graph analysis. Many applications use it to capture higher-

order patterns in the graph, thus improving the model accu-

racy. However, the memory explosion problem of this tech-

nique hinders it from analyzing large graphs. When process-

ing a billion-edge graph like Twitter, existing solutions (e.g.,

alias method) of the second-order random walk may take up

1796TB memory. Such high memory overhead comes from

the memory-unaware strategies for node sampling across

the graph.

In this paper, to clearly study the efficiency of various

node sampling methods in the context of second-order ran-

dom walk, we design a cost model, and then propose a new

node sampling method following the acceptance-rejection

paradigm to achieve a better balance between memory and

time cost. Further, to guarantee the efficiency of the second-

order random walk within arbitrary memory budgets, we

propose a memory-aware framework on the basis of the cost

model. The framework applies a cost-based optimizer to as-

sign desirable node sampling method for each node in the

graph within a memory budget while minimizing the time

cost. Finally, we provide general programming interfaces for

users to benefit from the memory-aware framework easily.

The empirical studies demonstrate that our memory-aware

framework is robust with respect to memory and is able

to achieve considerable efficiency by reducing 90% of the

memory cost.
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1 INTRODUCTION
Randomwalk is widely used for graph analysis like proximity

computation [17, 32, 38, 42], aggregate estimation [16, 24]

and graph embedding [3, 10, 25, 35]. Most existing models

use the first-order random walk [14], which assumes the

next node to be visited only depends on the current node.

However, the first-order random walk abstracts an over-

simplification of real-world systems. An example is user trails

on theWeb [40], where nodes areWeb pages and interactions

are users navigating from one Web page to another. A user’s

next page visit not only depends on the last page but also

is influenced by the sequence of previous clicks, which are

called higher-order dependencies. The first-order random

walk fails to capture such higher-order dependencies. Second-

order random walk is designed to model the higher-order

dependencies, thus improving the accuracy of applications.

One popular and recent application of second-order random

walk is to learn high-quality embeddings for graph analysis

tasks, like node classification [1, 36], link prediction [18,

39]. Node2vec [9, 44] is one of the most successful graph

embedding models. It uses the second-order random walk

to encode nodes from the same community closely together

and outperforms the deepwalk [25], a model using first-order

random walk. Besides the graph embedding, second-order
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Figure 1: The ratio of total memory footprint to the mem-
ory size of the graph when running node2vec. The number
at the top of each bar is the corresponding total memory
footprint.
random walk is also successfully applied to find meaningful

communities [2, 30] and model sequential data [38, 40].

Unlike the first-order random walk, the second-order one

visits the next node depending on both the current node and

the previous node. Given that the previous and current nodes

are u and v , the probability of the next node z is p(z |vu). We

call p as edge-to-edge transition probability (e2e for short).
Then for a graph G(V ,E), there are in total |E |d different

e2e probabilities, where d is the average degree of G. The
management of |E |d e2e probabilities is the bottleneck for

running second-order random walks on large graphs.

A straightforward solution is to build the e2e distribution
on demand, however, this approach has low efficiency and

the sampling time cost of each node is linear to the node

degree. To improve the sampling efficiency, current solutions

store the whole distribution in memory with sophisticated

data structures (e.g., alias table [37]). But this incurs the

memory explosion problem [35, 44]. From Figure 1, we find

that when running node2vec over a billion-edge graph like

Twitter, which has about 41.6M nodes and 2.4B edges, cur-

rent solutions require 1796TB memory that is 183910× larger

than the graph size of Twitter, and it is really expensive to

set up a machine/cluster to have that much memory. Even

for much smaller graphs (e.g., Youtube, LiveJournal), the ex-

isting empirical studies [35] also demonstrate that node2vec

encounters out-of-memory problem on a commodity server.

It is obvious that current memory-intensive solutions are not

cost-efficient approaches to process large graphs in the real

world. Therefore, the research question is how to maximize
the efficiency of executing second-order random walk on large
graphs within a memory budget.
In this paper, we dissect the random walk operation into

a sequence of node sampling, where a node generates sam-

ples from a discrete (non-)uniform distribution (e.g., e2e
distribution). Then we design a cost model to reveal the

trade-off between time and memory cost for different node

sampling methods. Specifically, given a single node v , the
node samplingmethod in the straightforward solution, called

naive method, entails O(dv ) time cost and O(1)memory cost,
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Figure 2: Overview of the memory-aware framework.
where dv is the degree of node v . The aforementioned ef-

ficient node sampling with alias table, called alias method,
entails O(1) time complexity and O(d2v ) memory complex-

ity. Inspired by the acceptance-rejection paradigm, we in-

troduce a new sample method called rejection method. The
rejection method uses the first-order random walk to sample

node, accepts the sampled node with probability β , named

acceptance ratio, and repeats the sampling until generat-

ing an accepted node. The rejection method entails O(Cv )

time complexity and O(dv ) memory complexity. Here Cv is

a model-related parameter and we prove Cv is smaller than

dv . Compared with the naive method and the alias method,

rejection method achieves a better balance between memory

and time cost.

From the above cost analysis, we find that these sampling

methods have advantages. However, they are fragile and

memory-unaware, i.e., they occupy fixed memory footprint,

and cannot boost the efficiencywhen the availablememory is

larger than the required one or ensure the success of the task

when availablememory is insufficient. Therefore, we propose

a memory-aware second-order random walk framework to

guarantee the high efficiency on arbitrary memory budgets.

The core of the framework is a cost-based optimizer. Based on

the cost model, the optimizer assigns proper node sampling

method for each node in the graph while minimizing the

total time cost. The assignment problem is modeled as a

multiple-choice knapsack problem [33], and we develop an

effective greedy algorithm to generate the assignment in

high efficiency. Further, considering the dynamic memory

budgets in practice, we also introduce an adaptive version

of the greedy algorithm, so that we can efficiently update

the node sampling assignment when the memory budget

changes including increase and decrease.

Finally, with our technical contributions, we carefully im-

plement the memory-aware framework (Figure 2) as a mid-

dleware for various second-order random walk models. In

this work, we implement two popular second-order random

walk models – node2vec and autoregressive model [27] for

the experiments. Further, to easily benefit from the aforemen-

tioned cost-based optimizer, the framework provides flexible



programming interfaces for users to define their own sample

methods and the second-order randomwalk models. We eval-

uate the framework on six real-world large graphs including

two billion-edge graphs. The empirical studies demonstrate

that our memory-aware framework is robust with respect

to memory and is able to achieve comparable efficiency by

saving 90% of the memory cost which is required by the

existing solutions.

We summarize our contributions as follows: 1)We propose

a memory-aware framework for second-order random walk

on large graphs. 2) We develop a cost-based optimizer to

find a node sampler assignment in high efficiency. 3) We

introduce a rejection method for second-order random walk.

4) We conduct extensive experiments on real-world datasets

and show the superiority of our framework.

2 PRELIMINARY
A graphG = (V ,E) is defined by a setV of vertices and a set E
of pairwise relations (edges) among vertices inV . We usev to

represent a vertex inG , N (v) to represent the neighborhood,
and the degree of v is dv . An edge is represented by (u,v)
and the corresponding weight iswuv .

2.1 Second-order RandomWalk
Random walk on a graph is a stochastic process, that de-

scribes a walk that consists of a succession of random se-

lected vertices. First-order random walk selects a vertex z
based on the state of last vertex v , and it follows the tran-

sition distribution p(z |v) = wvz
Wv

, whereWv =
∑

t ∈N (v)wvt .

Second-order random walk selects a vertex z based on the

states of last two verticesu andv , and the transition distribu-

tion is p(z |vu). For simplicity, the distribution p(z |v) is called
node-edge distribution (n2e for short), while the one p(z |vu)
is called edge-edge distribution (e2e for short).

The concrete e2e distribution is application dependent.

Here we introduce two popular second-order random walk

models: node2vec model and autoregressive model.

Node2vec model. As briefly mentioned before, node2vec

is a network embedding algorithm using second-order ran-

dom walk. The e2e distribution in node2vec defines the prob-

ability of walking from (u,v) to (v, z) as puvz =
w ′vz
W ′
v
, where

W ′
v =

∑
t ∈N (v)w

′
vt , andw

′
vz is defined as follows,

w ′vz =


wvz
a luz = 0

wvz luz = 1

wvz
b luz = 2

(1)

where luz is the unweighted distance between vertices u
and z, and a and b are two hyperparameters controlling

the affinity of local structure. Both a and b are positive real

values.

Algorithm 1 Second-order random walk generation procedure

Input: graph: G(V ,E), start node: v, length:maxLen

Output: random walk: L

1: L = {v} // an array

2: for t in 1..maxLen do
3: if t == 1 then
4: ut−1 = L[t − 1]

5: Node Sampler: draw node ut from p(ut |ut−1)

6: else
7: ut−1 = L[t − 1], ut−2 = L[t − 2]

8: Node Sampler: draw node ut from p(ut |ut−1,ut−2)

9: end if
10: L.append(ut )

11: end for
12: return L

Autoregressive model. The autoregressive model [27]

is used to compute second-order pagerank [38]. The e2e

distribution is puvz =
p′uvz∑

t∈N (v ) p′uvt
, where p ′uvz = (1−α)pvz +

αpuz , pvz =
wvz
Wv

, and 0 ≤ α < 1.

Note that in addition to the two models introduced above,

there are many other second-order random walk models,

such as the one utilizing network flow data [38], edge simi-

larity model [19]. In this paper, we concentrate on the two

models discussed here as representatives.

2.1.1 Node Sampler. Algorithm 1 lists the general procedure

of producing a second-order random walk on graphG . From
the algorithm, it is easy to see that the core operation is the

selection of a node from the neighborhood (Lines 5 and 8).We

name it as node sampler in this paper. The main logic of node

sampler is to apply different sampling methods to sample

nodes. The efficiency of node sampler is heavily related to

the sampling methods.

2.2 Three Sampling Methods
Given a discrete probability distribution P = {pi }, i = 1..n,
where pi is the probability of element i , and n is the number

of elements, the sampling method is to draw an element x
on the basis of distribution P , i.e., P[x = i] = pi . There are
many efficient sampling methods to realize the nonuniform

sampling. In this paper, we focus on naive method, rejection

method, and alias method.

Naive method [22]. This method generates a uniform [0,

1] random variable r , and put x = i if

i−1∑
k=1

pk < r ≤
i∑

k=1

pk (p0 = 0). (2)

We can apply various search techniques (e.g., linear search,

binary search, etc.) to locate the position of r in the cumula-

tive distribution of P . The sampling time complexity is O(n)
or O(loд(n)) while the memory complexity is O(n).
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Rejectionmethod [28]. This method samples an element

i from the target distribution P by instead sampling from a

proposal distribution Q = {qi } and accepting the outcome

from Q with probability
pi
Cqi

, repeating the draws from Q

until an outcome from Q is accepted. Usually the proposal

distributionQ is chosen by user and it is easier to sample than

the target distribution P . In addition, C is called bounding
constant, and satisfiespi ≤ Cqi for all values of i . The average
time complexity of rejection sampling is O(C)1.

Figure 3(a) shows an example of using rejection method to

sample a target distribution P = {0.2, 0.3, 0.4, 0.1}. We define

the proposal distribution Q to be the uniform distribution,

i.e., Q = {0.25, 0.25, 0.25, 0.25}, and setC to be 1.6. Then the

acceptance probabilities of four elements X1,X2,X3,X4 are

0.5, 0.75, 1, 0.25 respectively.
Alias method [37]. Alias method converts target distri-

bution into a uniform distribution over (possibly degenerate)

binary outcomes. Since the target distribution is nonuniform,

it means that some elements have more than
1

n probability,

and some have less. For each element having less than
1

n ,

alias method constructs an alias-outcome by combining it

with a small portion of some probability mass from one of

the higher-probability elements, topping up the total prob-

ability to
1

n . Internally, alias method maintains two tables,

a probability table U = {ui } and an alias table K = {ki }
(for 1 ≤ i ≤ n), where ui is the probability of choosing ele-

ment at index i as an outcome and ki is the alias-outcome

with respect to i . To sample a value, it first generates a uni-

form [1, n] random variable x to determine an index into

the two tables. Then it generates a [0, 1] random variable r ,
and on the basis of the probability ux , the final outcome is{

x r ≤ ux ,
kx otherwise .
Figure 3(b) illustrates the probability table and alias table

when using alias method to sample the target distribution

P = {0.2, 0.3, 0.4, 0.1}. The algorithm typically entails O(n)
time complexity to build the two tables, after which random

1
http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf

elements can be drawn from the distribution in O(1) time

complexity.

3 SECOND-ORDER RANDOMWALK
WITH REJECTION

In this section, we introduce the rejection method for second-

order random walk. Considering that the time cost of rejec-

tion method is related to the bounding constant, we also

empirically and theoretically analyze the distribution of the

bounding constants, and introduce a simple but effective

solution for bounding constant estimation.

3.1 Rejection Method for Node2vec and
Autoregressive Models

According to Section 2.2, rejection method consists of tar-

get distribution P , proposal distribution Q , and bounding

constant C . In the context of second-order random walk,

assume the previous and current nodes are u and v , then P
is {

w ,
vz

W ′
v
}, Q is {

wvz
Wv
}. According to the condition pi ≤ Cqi ,

we compute the bounding constant Cuv of an edge (u,v) as
follows,

Cuv =max{
P

Q
} =maxz∈N (v){

w,
vz

wvz

Wv
W ′v
}. (3)

During the sampling, the acceptance ratio βuvz is

βuvz =
1

Cuv

w,
vz

wvz

Wv
W ′v
=
w,
vz

wvz
mint ∈N (v){

wvt
w ′vt
}. (4)

Rejection for node2vec. According to the Equation 1,

assume the previous node u and current node v have com-

mon neighbors, the ratio
w ′vz
wvz

belongs to { 1a ,
1

b , 1}. Then the

bounding constant is Cuv =
Wv
W ′
v
max{ 1a ,

1

b , 1}. The accep-

tance ratio for a vertex z is βuvz =
w ′vz
wvz

min{1,a,b}.

Rejection for Autoregressive model. Similarly, Cuv is

Cuv =
Wv

W ′
v
maxz∈N (v){

(1 − α)pvz + αpuz
wvz

} (5)

=
maxz∈N (v){(1 − α) + α

puz
pvz
}

(1 − α) + α
∑
l ∈N (v) pul

(6)

The acceptance ratio βuvz is
(1−α )+α puz

pvz

maxt∈N (v ) {(1−α )+α
put
pvt
}
.

3.2 The Distribution of Bounding
Constants

The following theorem proves that the bounding constants

for any edge in an unweighted graph is bounded and cannot

be arbitrary large. The conclusion can be extended to the

weighted graph with more complex analysis.

Theorem 1. Given an edge (u,v) in an unweighted graph,
the bounding constant Cuv in node2vec and autoregressive

http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf
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Figure 4: The bounding constant distribution on Flickr. We visualize the distributions of exact bounding constants and esti-
mated bounding constants with five different thresholds. The range of the bounding constants (x-axis) is uniformly divided
into 10 buckets, i.e., max−min

10
. NV(0.25, 1) means a = 0.25 and b = 1 in node2vec model, and Auto(0.2) means α = 0.2 in autore-

gressive model.

model is bounded. Specifically, let θuv be the number of com-
mon neighbors of (u,v) (θuv ≥ 1), then the bound of Cuv of
node2vec is

Cuv ≤


dv
θuv

a ≥ 1, b ≥ 1,

dv 0 < a < 1, b ≥ a,
dv

dv−1−θuv
0 < b < 1, a ≥ b .

The one of autoregressive model is Cuv ≤
dv
θuv

.

Proof. 1) The bound ofCuv in node2vec. In an unweighted
graph,Wv = dv and the n2e transition probability is 1

dv
. Then

Cuv is dv
θuv+ 1

a +
dv −1−θuv

b
max{ 1a ,

1

b , 1}.

Next we give the bound with different a and b.
Case 1 (a ≥ 1, b ≥ 1): Cuv =

dv
θuv+ 1

a +
dv −1−θuv

b
≤

dv
θuv

.

Case 2 (1 > a > 0, b ≥ a): Cuv =
dv

aθuv+1+
a(dv −1−θuv )

b

≤ dv .

Case 3 (1 > b > 0, a ≥ b): Cuv =
dv

bθuv+ ba +(dv−1−θuv )
≤

dv
dv−1−θuv

.
2) The bound of Cuv in autoregessive model. Let pvz = 1

dv

and puz = 1

du
, then Cuv is Cuv =

(1−α )+α dv
du

(1−α )+α θuv
du

≤
dv
θuv

.

Discussion. There are two special cases (i.e., θuv = 0

and dv − 1)) for the bounds. When θuv = 0, for the case

1 of node2vec, the maximum factor becomes max{ 1a ,
1

b },

then Cuv is still bounded by dv . For autoregressive model,

Cuv = 1. When θuv isdv−1, themaximum factor of node2vec

becomesmax{ 1a , 1} and it degenerates to case 1 or case 2.

The autoregressive model is not affected.

According to Theorem 1, the bound ofCuv is proportional

to the node degree in the worst case, and the time complexity

of the rejection method will be linear to the degree. In real-

world graphs with standard parameter settings,Cuv is much

smaller than the degree actually. Let us denote the average

bounding constant of v as Cv , i.e., Cv =
1

dv

∑
u ∈N (v)Cuv .

The brown line in Figure 4 shows the distribution of exact

Cv on Flickr with standard parameter settings. For node2vec

model, the most frequent values of Cv are below 10, and

the autoregressive model has a similar trend. However, the

maximal Cv of the autoregressive model is larger than the

one of node2vec, this implies that the autoregressive model

is more easily to be close to the bound defined in Theorem 1.

3.3 The Computation of Bounding
Constants

As introduced in Section 2.2, the efficiency of rejectionmethod

is determined by the bounding constant. Therefore, we dis-

cuss how to compute (or estimate) the bounding constant

in the context of second-order random walk. According to

Equation 3, the exact Cv can be computed by enumeration

which entails O(d2v ) time complexity for node v . For the
whole graph, the total time cost has the same complexity as

the one of triangle counting [15], which is expensive. We

resort to computing approximate ones for improving the

efficiency of bounding constants computation.

On the basis of time complexity O(d2v ), we notice that

nodes with higher degree incur larger time cost. Therefore,

we estimate the bounding constants via sampling when the

node degree exceeds a predefined threshold Dth . Formally,

we estimate the Cuv as Cuv =maxz∈SN (v){
w ,
vz

wvz

Wv
W ′
v
}, where

SN (v) is a uniformly sampled neighborhood of v with size

Dth . Then the estimation time cost is O(dvDth).

We empirically study the effectiveness of the above estima-

tion. Figure 4 shows the distributions of estimated bounding

constants on Flickr by settingDth = [200, 400, 600, 800, 1000].



The results demonstrate that a relatively small threshold (e.g.,

600) can achieve a good estimation. In addition, the above

discussion assumes the sample size equals to the threshold.

Theoretically, on the basis of the law of large numbers [8],

the proposed method can achieve the exact estimation when

the sample size is large enough.

4 COST ANALYSIS OF NODE SAMPLER
In this section, we analyze the time and memory cost of three

node samplers and introduce a cost model in the context of

second-order random walk.

Without loss of generality, we assume that a probability

value is stored in bf bytes and a node id is stored in bi bytes.
The unit of time cost is denoted by K . dmax is the maximum

node degree in a graph. In addition, in second-order random

walk models, the computation of biased weight is related to

the existence of common neighbors, and we assume the cost

of this operation is c , which is related to the node degree.

4.1 The Cost of Node Samplers
Naive Node Sampler. According to Equation 2, naive

node sampler needs the cumulative distribution for sampling,

and it builds the distribution on the basis of edge weights.

1) Memory cost: The sampler uses an array of length dv
to store probabilities for a node. Across the whole graph, we

only need to allocate a single array of length dmax . In the

view of a node, the average memory cost is

bf dmax

|V | bytes.

2) Time cost: The time cost consists of the distribution

building cost and sampling cost. Assume linear search is

used to locate the index, the sampling cost of node v is dvK .
To build the distribution, for each neighborhood, we need to

check the existence of the edge between the previous node

and next node, therefore, the cost is dvcK . In total, the time

cost is dv (c + 1)K .
Rejection Node Sampler. Generally, the rejection node

sampler follows Equations 3 and 4.

1) Memory cost: Considering that the start node of second-

order random walk and successive sampled nodes for rejec-

tion are both sampled from the n2e distribution (proposal dis-

tributionQ), we use alias method which entails (bf +bi )×dv
bytes memory cost. Besides, to compute the acceptance ra-

tio with regard to each edge (u,v), we need to store a fac-

tormint ∈N (v){
wvz
w ′vz
}. There are total dv different factors, the

storage is bf × dv . In total, for a node v , the memory cost is

dv × (bf + bi ) + dv × bf bytes.

2) Time cost: The sampling time complexity of rejection

node sampler is the average bounding constant O(Cv ), and

then the cost is CvK . In addition, for each sample, we need

to compute w ′ to obtain the acceptance ratio, which relies

on checking the existence of the edge between the previous

Node Sampler Memory Cost (M) Time Cost (T)

Naive

bf dmax

|V | dv (c + 1)K

Rejection (2bf + bi )dv CvcK
Alias (bf + bi )(d

2

v + dv ) K

Table 1: Cost comparison of a node sampler by using three
different sampling methods for second-order random walk.
Notice that Cv is the average bounding constant of node v.
bf and bi are the bytes of storing a non-integer and integer
value respectively.

node and next node, resulting total Cv numbers of edge

existence checking. Therefore, the total time cost is CvcK .
AliasNode Sampler. Asmentioned before, the aliasmethod

requires two tables for a single distribution. One stores prob-

abilities and the other is store alias-outcomes (i.e., node ids).

1) Memory cost: Given a node v , there are dv e2e distribu-

tions, thus entailing dv × (bf + bi ) × dv bytes memory cost.

Furthermore, according to Algorithm 1, to sample the start

node for a second-order random walk (i.e., t = 0), we need

to sample it from the n2e distribution, then the alias method

also incurs another two tables. Overall, the node v entails

(dv + 1) × dv × (bf + bi ) bytes memory cost.

2) Time cost: Since the sampling performance of the alias

method is O(1), the alias node sampler can generate a sample

in constant time, which is K .

4.2 Cost Model
We summarize the above cost analysis as the cost model

listed in Table 1 for second-order random walk. We can in-

stantiate a cost model by determining the data types and the

complexity of checking the existence of common neighbors.

For example, assuming that the probability is stored in float
data type, the node id is stored in integer data type, and the

binary search is used for common neighbor checking, then

bf = 4, bi = 4 and c = loд(dv ).
From the table, we figure out that the more memory used

the better time efficiency achieved. Concretely, we denote

the memory costs of naive node sampler, rejection node sam-

pler and alias node sampler byMn ,Mr andMa respectively.

Similarly, the time costs are Tn , Tr and Ta . According to The-

orem 1, 1 ≤ Cv ≤ dv holds. Then we have the following

two orders: Ma > Mr > Mn , and Ta < Tr < Tn . Therefore,
in the ideal scenario where memory is unlimited or large

enough, we simply use alias node sampler to achieve the best

efficiency. However, as introduced in the Introduction, this

incurs the memory explosion problem in practice. To smartly

utilize the memory, we turn to assign different samplers for

each node, so that maximize the efficiency without causing

memory explosion. Finally, we propose a memory-aware

second-order random walk framework.



5 MEMORY-AWARE SECOND-ORDER
RANDOMWALK FRAMEWORK

Figure 2 illustrates the overview of thememory-aware second-

order random walk framework. The core of the framework

is a cost-based optimizer. The optimizer guarantees the high-

efficiency of second-order random walk on various memory

budgets. It not only greedily finds an efficient node sampler

assignment from scratch, but also is able to fast update the

assignment when the memory budget changes online.

During the execution, the framework 1) first initializes

the cost model and computes the bounding constants for the

rejection node sampler. 2) Then it executes the cost-based

optimizer to generate an efficient node sampler assignment

without violating the memory constraint. 3) On the basis of

the assignment, it initializes each node sampler across the

graph. 4) Finally, the framework is ready to do the second-

order random walk. In addition, the framework provides

flexible programming interfaces for users to define new sam-

plers and application-oriented random walk models. Thus,

the framework can be a middleware in existing second-order

random walk based applications to improve the sampling

efficiency.

5.1 Cost-based Optimizer
The responsibility of the cost-based optimizer is to find a

node sampler assignment in which the sampling efficiency

is maximized while the memory footprint is constrained

by the given budget. To formally analyze the node sampler

assignment problem, we define it as follows:

Definition 1. (Node Sampler Assignment Problem). Given
a graph G = (V ,E) and a set of node samplers NS = {nsj },
1 ≤ j ≤ S , the cost model is CM = {(Ti j ,Mi j )}, where Ti j
is the time cost of node i using sampler nsj and Mi j is the
corresponding memory cost, the goal of the problem is to assign
a sampler to each node in graphG such that the total time cost
is minimized and the memory cost does not exceed a predefined
memory budgetM . The formal objective is

minimize
|V |∑
i=1

j=S∑
j=1

Ti jxi j , (7)

subject to
|V |∑
i=1

j=S∑
j=1

Mi jxi j ≤ M, (8)

j=S∑
j=1

xi j = 1, i = 1, 2, ..., |V |, (9)

xi j = {0, 1}, i = 1, 2, ..., |V |; j = 1, 2, ..., S . (10)

The following theorem shows that the above problem is a

0-1 Multiple-Choice Knapsack Problem (MCKP).

Theorem 2. The node sampler assignment problem is a 0-1
Multiple-Choice Knapsack Problem [33].

Proof. LetMmax be the maximum memory consumption
among allMi j , i.e.,Mmax =max1≤i≤ |V |;1≤j≤S {Mi j }.
We define M∗i j = Mmax − Mi j , then Equation 8 becomes∑ |V |
i=1

∑j=S
j=1 M

∗
i jxi j ≥ |V | ∗Mmax −M .

According to the definition of 0-1 MCKP [33, 41], the assign-
ment problem with the new memory constraint is an exact 0-1
MCKP.

In this paper, we have defined three node samplers, and

they are alias node sampler, rejection node sampler, and

naive node sampler. The cost model is listed in Table 1. Users

can further extend the node sampler set by defining new

samplers on the basis of our flexible programming interface

which is introduced in Section 5.4.

5.2 Greedy Algorithms of Node Sampler
Assignment

The original 0-1 MCKP is an NP-hard problem. It has pseudo-

polynomial algorithmwhich is a dynamic programming solu-

tion [5], however, the dynamic programming method entails

high time complexity O(|V |M) and cannot process large

graphs and large memory budgets. Here we focus on greedy

algorithms which are often efficient for the big data scenar-

ios.

5.2.1 LP Greedy Algorithm. To solve the 0-1 MCKP, a classi-

cal solution is to transform the original problem into linear

MCKP (LMCKP) by relaxing the constraint (10) and allowing

xi j to be real value. The optimal solution of LMCKP is the

lower bound for the 0-1 MCKP. Then the original problem is

solved to optimality through enumeration [6], or finds the

approximation by rounding [33]. Here we use the rounding

technique to achieve an efficient node sampler assignment

and theoretically analyze its approximation bound.

Properties of LMCKP. We restate two properties of the

optimal solution for LMCKP in the context of graph.

Property 1. P-Domination. For any nodevi ∈ V , ifTi j ≥
Tik andMi j ≥ Mik , then xi j = 0 in the optimal solution.

Proof. Refer to the proof of Proposition 1 in the work [33].

Property 2. LP-Domination. For every node vi ∈ V , if
Tir ≥ Tis ≥ Tit , Mir ≤ Mis ≤ Mit , and

Tis−Tir
Mis−Mir

> Tit−Tis
Mit−Mis

,
then xis = 0.

Proof. Refer to the proof of Proposition 2 in the work [33].

On the basis of the two properties, we assume the cost

model CM = {(Ti j ,Mi j )} on every node are ordered as fol-

lows: Ti1 ≥ Ti2 ... ≥ TiS ,Mi1 ≤ Mi2 ... ≤ MiS , and there

is no LP-Domination. For any cost pair violates the above

condition, we can set the corresponding x to be zero. Fortu-

nately, the cost model in Table 1 satisfies the condition. In

general cases, a set of user-defined node samplers may not



Algorithm 2 LP Greedy Algorithm

Input: Graph: G(V ,E), Cost Model: CM = {(Ti j ,Mi j )}, Mem-

ory Budget: M

Output: Assignment: assiдnDict , Trace: path

1: usedMem = 0

2: path = []

3: for each vi in V do
4: eliminate P-Domination and LP-Domination of node

samplers of vi according to Property 1 and 2.

5: assign node sampler with smallest memory cost (NSi1)

to node vi , i.e., assiдnDict[vi ] = NSi1
6: usedMem = usedMem +Mi1
7: end for
8: compute the gradients

Ti j+1−Ti j
Mi j+1−Mi j

for each node.

9: sort the gradient array q in ascending order.

10: while q.notEmpty() do
11: NSik = (Tik ,Mik ), i.e., select the minimal

Ti j+1−Ti j
Mi j+1−Mi j

from q.

12: (Ti ,Mi ) ← assiдnDict[vi ]

13: if usedMem - Mi + Mik > M then
14: break;

15: end if
16: assiдnDict[vi ] = NSik
17: usedMem = usedMem - Mi + Mik
18: path.append(NSik ) //maintain the assignment trace for

update.

19: end while

always hold the condition, i.e., there are P-Domination or

LP-Domination samplers. Notice that the samplers which

are not dominated are the lower convex boundary among all

the user-defined samplers [26], therefore, for each node, we

can find these undominated samplers by ordering them in

increasing memory costs and successively testing the sam-

pler according to Property 1 and 2. Next we give the theorem

about the optimality of LMCKP.

Theorem 3. An optimal solution of LMCKP has at most
two fractional variables, which are from the same node, i.e.,
two variables are xi j and xil . Furthermore, the variables are
adjacent, i.e., l = j + 1.

Proof. Refer to the proof of Proposition 3 in the work [33].

Solution. LP greedy algorithm uses LMCKP solver to get

the optimal solution of LMCKP, then it rounds up the solu-

tion, i.e., assume xi j and xi j+1 are two factional variables, it

sets xi j = 1 and xi j+1 = 0 for approximation. Algorithm 2

lists the main procedure. First for each node, it eliminates the

P-Domination and LP-Domination in the input cost model,

and assigns the node the most time expensive node sampler,

e.g., NSi1. Then it selects the minimal
Ti j+1−Ti j
Mi j+1−Mi j

to update

the assignment, which indicates the most profitable changes

3
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Cost Model Table

vid 𝒅𝒗 𝑪𝒗
𝑵𝑺𝟏(Naïve) 𝑵𝑺𝟐 (Rejection) 𝑵𝑺𝟑(Alias)
𝑴𝐢𝟏 𝑻𝐢𝟏 𝑴𝐢𝟐 𝑻𝐢𝟐 𝑴𝐢𝟑 𝑻𝐢𝟑

0 3 2.41 3.0 6.0 36.0 2.41 96.0 1.0
1 1 1.00 3.0 2.0 12.0 1.00 16.0 1.0

2 2 1.60 3.0 4.0 24.0 1.60 48.0 1.0
3 2 1.60 3.0 4.0 24.0 1.60 48.0 1.0

Seq. vid Grad. Sampler Mem. Seq. vid Grad. Sampler Mem.
0 3 -0.114 N->R 33 4 3 -0.025 R->A 120
1 2 -0.114 N->R 54 5 2 -0.025 R->A 144
2 1 -0.111 N->R 63 6 0 -0.024 R->A 204
3 0 -0.109 N->R 96 7 1 0 R->A 208

Sorted gradients and node sampler update sequence. N=Naïve, R=Rejection, A=Alias.

Model: NV(0.25, 4)
Cost Model:
- 𝑐 = 1
- 𝑏6 = 4, 𝑏8 = 4
Memory Budget: 188

Figure 5: A concrete example of applying LP greedy algo-
rithm on a toy graph. The memory budget is 188, and the fi-
nal node sampler assignment is {0:R, 1:R, 2:A, 3:A}. The top
table describes the cost model while the bottom table lists
the sorted gradients where the rows in red color are the up-
date log by LP greedy algorithm within the memory budget.
Notice that four nodes are initialized with naive node sam-
plers, the total used memory is 4 × 3 = 12 at the beginning.
currently. When the memory budget runs up, the algorithm

finishes and does the approximation implicitly.

More concretely, we present an example of using LP greedy

algorithm on a toy undirected graph, which has 4 nodes and

4 edges. The node sampler set consists of naive, rejection

and alias node samplers and the memory budget is 188 Bytes.

Figure 5 visualizes the key intermediate statistics of the ex-

ample including the corresponding cost model and the sorted

gradients for each node. First, when LP greedy algorithm

finishes the initialization (Lines 3-7 in Algorithm 2), each

node is assigned naive node sampler and the usedMem is 12.

Then it selects the minimal gradient −0.114, changes node
sampler of node 3 from naive to rejection, and the usedMem
becomes 12−3+24 = 33. This greedy procedure (Lines 10-19)

does not stop until the memory budget is reached. In this

example, when node 2 is determined to use alias method by

the algorithm, the usedMem reaches 144 and the remained

memory budget 188 − 144 = 44 cannot support any further

node sampler update. Therefore, the final node sampler as-

signment is that nodes 0 and 1 use rejection node sampler

and nodes 2 and 3 use alias sampler.

Analysis of approximation bounds. LP greedy algo-

rithm does not guarantee to find the optimal solution of

MCKP. But the following theorem shows that the LP greedy

algorithm cannot be arbitrary worse with regard to the

second-order random walk model.

Theorem 4. Given a graph G , and the three node samplers
are used, if the optimal solution of MCKP is denoted by OPT ,
the solution of LP greedy algorithm is A, then OPT ≤ A ≤
max{ c+1c , c}dmaxOPT , where dmax is the maximum degree of
G and c is the cost of checking common neighbors of an edge
which is degree dependent.



Proof. First, it is obviously OPT ≤ A because of the ap-
proximation of A.
Second, let OPT lp be the optimal solution of LMCKP, since

OPT lp ≤ OPT , we proveA ≤ max{ c+1c , c}dmaxOPT
lp instead

of A ≤ max{ c+1c , c}dmaxOPT .
Assume the node vk has two fractional variables xk j = λ

and xk j+1 = 1−λ inOPT lp , thenOPT lp =
∑ |V |

i=1,i,k
∑S
l=1Til +

λTk j + (1 − λ)Tk j+1, and A =
∑ |V |

i=1,i,k
∑S
l=1Til +Tk j .

Let D =
∑ |V |

i=1,i,k
∑S
l=1Til , and Tk j ≥ Tk j+1, we have

A

OPT lp
=

D +Tk j

D + λTk j + (1 − λ)Tk j+1
≤

D +Tk j

D +Tk j+1
≤

Tk j

Tk j+1

≤ max{
Tn
Tr
,
Tr
Ta
} =max{

dvk (c + 1)

Cvkc
,Cvkc},

where Tn ,Tr ,Ta are the time cost of naive, rejection and alias
node samplers respectively.

Finally, based on the Theorem 1 andCv ≥ 1, it is easy to fig-
ure outmax{

dvk (c+1)
Cvk c

,Cvkc} ≤ max{ c+1c , c}dmax . Therefore,
the above theorem holds.

The above theorem gives the upper boundmax{ c+1c , c}dmax
of approximation between LP greedy algorithm and the opti-

mal one. The upper bound is not only related to the graph, but

also influenced by the algorithm for common neighbor check-

ing. When binary search is used for checking, c is loд(dv ),
the upper bound is dmax loд(dmax )(dmax ≥ 4); when hash-

set is used for checking, c is one, the upper bound becomes

2dmax . Although the upper bound is loose and graph-related,

in practice, our empirical studies in Section 6 showcase the

high-efficiency of the assignment generated by the LP greedy

algorithm for real-world graphs. Another intuitive explana-

tion is that existing empirical studies [33] demonstrated that

the search of P-domination in the class where fractional vari-

ables exist would lower the cost, while the search among

other classes will not lower the cost. For the second-order

random walk with the aforementioned three node samplers,

there is actually no P-domination in the same class. There-

fore, the output of the LP greedy algorithm is (close to) the

optimal solution in high-probability.

5.2.2 Degree-based Greedy Algorithm. An intuition for solv-

ing the node sampler assignment problem is to use the alias

node sampler as many as possible. From the cost model, we

have two following observations: 1) The node with larger

degree usually achieves more efficiency improvements when

changing node sampler from rejection/naive to alias. This

motivates us to assign nodes with large degree the alias node

sampler first. 2) The node with smaller degree occupies less

memory resulting more nodes can use alias node sampler

within a memory budget. This motivates us to assign nodes

with small degree the alias node sampler first.

1 class NodeSampler {

2 virtual int sample(int nid) = 0;

3 virtual float timeCost(int nid) = 0;

4 virtual float memCost(int nid) = 0;

5 };

6 class SecondRandomWalker {

7 virtual float biasedWeight(int u, int v, int z) = 0;

8 };

Figure 6: Programming interfaces of the memory-aware
second-order random walk framework.
On the basis of the above observations, we introduce a

basic degree-based greedy algorithm,whichworks as follows:

first, the nodes in the graph are sorted by degree in increasing

(decreasing) order; then for each node, within the memory

budget, it tries to assign node samplers in alias, rejection and

naive order.

Compared with the LP greedy algorithm, the degree-based

solution is much simpler. However, it does not consider the

time cost explicitly and is hard to obtain an approximation

bound. The experimental results will demonstrate that the

degree-based algorithms only work well when the memory

budget is large.

5.3 Adaptive Solution for Dynamic
Memory Budget

In the real-world environment, e.g., cloud service, public

clusters, the available memory is dynamic. This requires

that the node sampler assignment can be adaptively adjusted

when thememory budget changes. Due to the linear property

of greedy algorithms, we can easily extend the proposed

solution to be adaptive.

During the original greedy process, we maintain the trace

of greedy options (Line 18 inAlgorithm 2).When thememory

budget changes, we execute the following two strategies to

update the node sampler assignment.

Memory budget increase. When the available memory

increases, the previous assignment is not affected by the new

total budget, so we just restart the greedy algorithm from

the last state in the trace.

Memory budget decrease. In this case, we need to re-

voke some node assignments to reduce the total memory.

Since the original greedy algorithm does the greedy choice

in increasing order in terms of the memory size, we execute

the reverse order to reduce the used memory. Specially, we

pop the greedy choices from the trace until the total memory

satisfying the new budget.

5.4 Framework Implementation
We carefully implemented the memory-aware framework

in C++. The graph is organized as CSR format [29]. Both

the cost-based optimizer and the random walk model run in



G |V| |E| davд Mд
Blogcatalog 10.3K 668K 64.8 13MB

Flickr 80.5K 11.8M 146.6 185MB

Youtube 1.1M 6.0M 5.3 108MB

LiveJournal 4.8M 86.2M 17.8 1,375MB

Twitter 41.6M 2.4B 39.1 ∼10GB

UK200705 105.9M 6.6B 62.6 ∼26GB

Table 2: Dataset statistics. Mд is the memory size of the
graph.

a vertex-centric manner. We parallelize the computation at

node level by using OpenMP library.

Programming interface. To enable users to easily bene-

fit from the cost-based optimizer, we develop two program-

ming interfaces for the framework – NodeSampler interface

and SecondRandomWalker interface, which are illustrated

in Figure 6. The NodeSampler defines the sampling proce-

dure from a discrete distribution with corresponding time

and memory cost. The SecondRandomWalker defines the

logic of computing biased edge weight for an interested

second-order random walk.

Optimization of the cost-based optimizer. During the
initialization phase, the cost-based optimizer needs bounding

constant Cv to compute the time cost of rejection method.

Since the exact computation of Cv is expensive and the opti-

mizer does not require the exact time cost, we use the bound-

ing constant estimation (Section 3.3) to obtain approximate

Cv for improving the efficiency of initialization.

6 EXPERIMENTS
6.1 Experimental Settings
Without clarification, the experiments are run on a cloud

server, which equips with a 64-bit 24-core CPU, 96GB mem-

ory and 2TB hard disk. The operating system is Ubuntu 18.04

64bits. The default parallelism of the framework is set to 16.

Datasets. We use six public datasets: Blogcatalog, Flickr,

Youtube, LiveJournal, Twitter, UK200705. All the graphs

are processed into undirected. Table 2 lists the statistics of

datasets. The memory size Mд of each graph is collected

during the runtime from /proc/<pid>/statm file.

Comparedmethods. The proposedmemory-aware second-

order random walk framework has four variants with differ-

ent greedy algorithms and optimizations. LP-std is the solu-

tion with LP greedy algorithm. LP-est is the solution using

the optimization of bounding constant estimation, and the

default threshold is set to 600. Deg-inc and Deg-dec are two
variants using degree-based greedy algorithm in increase

and decrease order respectively. In addition, the memory-

unaware second-order random walk with three basic node

samplers are compared, and they are called naive, rejection,

and alias for simplicity.

Second-order randomwalk models. Node2vec and au-
toregressive models are used.

(1) The node2vec model is controlled by two hyperpa-

rameters a and b, denoted by NV (a,b). We follow the

original work [9] and set a,b ∈ [0.25, 1, 4].
(2) The autoregressive model is controlled by one hyper-

parameter α , denoted by Auto(α ). We set the values of

α to be [0, 0.2, 0.4, 0.6, 0.8].

Benchmarks. To evaluate the efficiency of the proposed

solution, we choose two different benchmarks.

(1) Node2vec Random Walk: Following the random walk

sampling pattern in node2vec, every node in a graph

samples a set of randomwalkswith a fixed length. Here

we use the same parameter settings from node2vec

model [9], and sample 10 walks per node with walk

length of 80.

(2) Second-order PageRank query: Wu et al. [38] propose

the second-order PageRank query. Given a query node

v , it runs the second-order random walk with restart

to estimate the pagerank. The decay factor is 0.85, the

maximum length is 20, and the total sample size is 4|V|.

In addition, we randomly choose 100 query nodes for

each dataset.

The node2vec random walk task is run over the node2vec

model, while the second-order PageRank query is run over

the autoregressive model.

Evaluation Metrics. We compare the elapsed time (sec-

onds) and memory footprint among different methods. The

elapsed time is further decomposed into initialization time

Tinit and sampling time Ts . For the memory-aware second-

order random walk framework, the Tinit includes the cost
of computing the bounding constants TCv and the cost of

initializing node sampler related data structureTNS . In other

words, the initialization time is

Tinit =

{
TCv +TNS LP − std, LP − est ,

TNS otherwise .
(11)

For the sampling costTs , it is the average query time per node

in autoregressive model, while it is the time cost of sampling

10 walks per node with walk length of 80 in node2vec. Each

experiment is run five times, and the average results are

reported.

6.2 Effectiveness of Greedy Algorithms
We show the efficiency of node sampler assignments gener-

ated by different greedy algorithms on various memory bud-

gets. Four datasets are used. For Blogcatalog, Flickr, Youtube,

we set the maximum memory budget to 3GB, 70GB, 25GB

respectively, that ensures the alias method can run in mem-

ory. For LiveJournal, the ideal maximum memory budget

(≈109GB) exceeds the physical total memory (96GB), so we
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Figure 7: The comparison of Ts and Tinit with respect to the greedy algorithms on Youtube (YT) and LiveJournal (LJ).

set the maximum budget to 90GB. Then we vary memory

budgets by setting the ratios of the given memory budget to

the maximum budget to [0.1, 0.3, 0.5, 0.7, 0.9, 1.0].

We only report the results of four models – NV(4, 0.25),

NV(0.25, 4), Auto(0.2), Auto(0.8). One reason is that the se-

lected models are already representative since they have

different ranges of the bounding constants (see Figure 4). An-

other reason is that other configurations have similar results,

and the result space of all configurations is huge. In addition,

Figure 7 only visualizes the sampling cost and initialization

cost on Youtube and LiveJournal because of the limited space.

Actually, the results on the other two datasets are consistent

with the following analysis.

Sampling cost Ts analysis. In Figure 7 (a)-(d) and (i)-(l),

we see that all the greedy algorithms achieve better efficiency

by increasing the memory budget. The LP-std and LP-est al-

ways outperform the Deg-inc and Deg-dec. Especially, when

the ratio is low, the gap of Ts can be up to 46×. Taking Fig-

ure 7(a) as an example, when running NV(0.25,4) on Youtube

with 2.5 GB memory budget (i.e., ratio=0.1), the LP-std takes

48.115 seconds while Deg-inc needs 2211.71 seconds. This is

because the degree is not linearly proportional to the cost of

sampling, so the degree-based algorithms cannot reduce the

cost quickly simply according to the degree order. The LP

greedy algorithm models the cost saving via gradients, and

it can improve the performance effectively even when the

memory budget is low. On the other hand, when the mem-

ory budget is large enough (e.g., ratio=1.0), all the methods

achieve similar efficiency. In addition, LP-std and LP-est have

similar efficiency across different settings, this demonstrates

that bounding constant estimation works well in practice.

Initialization costTinit analysis. In Figure 7 (e)-(h) and

(m)-(p), unlike the sampling cost Ts , the initialization cost

Tinit (Equation 11) gradually increases when the memory

budget increases. This is because more alias node samplers

are used, and they entail O(d2) initialization cost for each

node. Another observation is that the initialization of LP-std

and LP-est is slower than the one of Deg-inc and Deg-dec.

One reason is that LP-std and LP-est need the bounding

constants, whose computation entails TCv (yellow bar in



Dataset

NV(0.25, 4) NV(4, 0.25) Auto(0.2) Auto(0.8)

LP-std

TCv
LP-est

TCv
Save

cost

LP-std

TCv
LP-est

TCv
Save

cost

LP-std

TCv
LP-est

TCv
Save

cost

LP-std

TCv
LP-est

TCv
Save

cost

Blogcatalog 2.830 1.670 40.99% 2.889 1.661 42.51% 1.867 1.470 21.26% 1.874 1.456 22.31%
Flickr 85.841 47.480 44.69% 85.981 47.477 44.78% 56.695 44.259 21.93% 56.734 44.322 21.88%
Youtube 66.453 5.333 91.97% 67.232 5.334 92.07% 28.128 4.139 85.29% 28.802 4.146 85.61%

LiveJournal 110.442 75.776 31.39% 109.949 75.697 31.15% 71.075 64.981 8.57% 71.040 64.816 8.76%

Table 3: The comparison of bounding constant computation cost TCv between LP-std and LP-est.

Graph Naive Rejection Alias

Blogcatalog 0.3MB 8MB 2,848MB

Flickr 0.4MB 139MB 66,996MB

Youtube 6MB 174MB 22,949MB

LiveJournal 20MB 1,372MB 111,980MB
∗

Table 4: Memory footprint of memory-unaware solutions.
* indicates the memory size is estimated.
Figure 7). Therefore, we decompose Tinit of LP-std and LP-

est intoTCv andTNS . We see that when the memory budgets

are large, the TNS of LP-std and LP-est is comparable to the

one of Deg-inc and Deg-dec. When the memory budgets are

small, the degree-based algorithms are more efficient with

respect to the initialization cost. This is because the node

sampler assignments generated by Deg-inc and Deg-dec are

much simpler than the ones created by LP-std and LP-est.

Considering the overhead TCv of LP greedy algorithms,

LP-est is proposed to reduce the initialization cost. Table 3

lists the TCv of LP-std and LP-est on four datasets. Since the

computation of Cv is irrelevant to the memory budget, we

showcase the average TCv of different memory budgets on

the same second-order random walk model. Overall LP-est

can reduce 8.76%-92.07% of TCv caused by LP-std, while it

still remains the similar sampling efficiency.

6.3 Efficiency of the Proposed Framework
We compare our proposed framework with three memory-

unaware solutions on four datasets. Since our framework

is memory-aware and the larger memory budget results in

better performance, we choose memory budget ratios 0.1 and

1.0 as representative for comparison. Table 5 summarizes the

sampling cost Ts and initialization cost Tinit .
Memory footprint comparison. We present the mem-

ory consumption of memory-unaware solutions in Table 4.

Consistent with our theoretical analysis in Section 4, the

naive occupies the least memory, the rejection consumes the

memory comparable to the graph size, and the alias incurs

the most memory, which has the memory explosion problem.

Sampling costTs comparison. From Table 5, we see that

when the memory budget is large enough for the dataset,

alias method achieves the best performance, and LP-std (1.0)

entails the similar time cost. The slight performance gap

between alias method and LP-std (1.0) is caused by the fol-

lowing two reasons. One is that for nodes with degree one,

LP-std uses the naive method on the basis of the cost model.

The other is the overhead of the memory-aware second-

order random walk framework itself. However, when the

dataset becomes large (e.g., LiveJournal), the alias method

suffers from Out-Of-Memory (OOM) error, but LP-std (1.0)

still works well. This result demonstrates the robustness of

our framework.

Another interesting observation is that LP-std (0.1) achieves

comparable performance as well, and it is always faster than

the rejection method. This implies even when the memory

budget is small, our framework is able to find a good node

sampler assignment for efficient random walk generation.

Initialization cost Tinit comparison. We compare the

Tinit ofmemory-unaware solutions and our proposedmethod.

The naive method has the best initialization performance

since it almost does not need to do any heavy preprocessing.

The rejection method incurs the moderate initialization cost,

and it only needs to compute the factor mint ∈N (v)
wvt
w ′vt in

Equation 4. The alias method entails the heaviest initializa-

tion cost among the three memory-unaware solutions.

For the memory-aware solutions, the initialization cost

consists of TCv and TNS . When the memory budget is small,

the initialization cost of our method is less than the one of

alias method, since a few numbers of alias tables need to

be created, but it is still greater than the rejection method

because of TCv . When the memory budget is large, the ini-

tialization cost of the memory-aware framework is greater

than the alias method due to TCv as well.

6.4 Efficiency over Billion-egde Graphs
To further demonstrate the efficiency of the memory-aware

(MA) framework over very large graphs, we run node2vec

random walk task on two billion-edge graphs, Twitter and

UK200705. Assuming the graph size isMд , we set memory

budgets by varying fromMд to 10Mд . Table 2 gives theMд
of Twitter and UK200705. The experiments are conducted on

a server equipping with 376GB memory. Among the three

memory-unaware solutions, except the rejection method,

naive method cannot finish the task in 4 hours, and alias

method fails because of the Out-Of-Memory error. There-

fore, we only compare the MA framework with the rejection

method, which requires the minimal memory around 21G

and 54G on Twitter and UK200705 respectively.

Figure 8 illustrates the experimental results. Notice that

the performance of the MA framework with memory budget

Mд is not listed because it cannot finish the execution in

4 hours. First, the MA framework can process the billion-

edge graphs efficiently. On both Twitter and UK200705, it



Model

Cost

Type

Blogcatalog Flickr

Naive Rejection Alias

LP-std

(0.1)

LP-std

(1.0)
Naive Rejection Alias

LP-std

(0.1)

LP-std

(1.0)

NV(0.25,4)

Tinit 0 2.682 9.451 6.020 12.048 0 83.920 229.846 181.263 315.415

Ts 40.894 1.247 0.169 0.881 0.173 723.564 22.230 2.124 15.052 2.205

NV(4,0.25)

Tinit 0 2.692 9.329 6.151 12.176 0 83.855 229.846 182.058 315.709

Ts 28.462 0.241 0.174 0.204 0.183 588.911 4.121 2.258 3.401 2.324

Auto(0.2)

Tinit 0 1.852 9.115 4.119 10.834 0 55.433 220.835 123.821 276.978

Ts 0.522 0.015 0.004 0.014 0.004 5.495 0.115 0.040 0.099 0.047

Auto(0.8)

Tinit 0 1.807 9.207 4.156 11.058 0 55.662 220.735 123.596 277.582

Ts 0.757 0.050 0.004 0.047 0.005 6.378 0.379 0.044 0.312 0.050

Model

Cost

Type

Youtube LiveJournal

Naive Rejection Alias

LP-std

(0.1)

LP-std

(1.0)
Naive Rejection Alias

LP-std

(0.1)

LP-std

(1.0)

NV(0.25, 4)

Tinit 0.003 64.357 172.012 135.031 240.450 0.013 108.741 OOM 251.328 455.423

Ts 2558.18 127.374 18.188 48.115 18.980 7472.88 803.293 OOM 569.428 135.041

NV(4, 0.25)

Tinit 0.003 66.410 172.746 133.317 242.238 0.013 109.026 OOM 250.705 455.831

Ts 2253.84 43.114 24.403 28.281 25.793 8815.27 289.735 OOM 226.582 157.496

Auto(0.2)

Tinit 0.003 28.210 132.701 55.747 161.893 0.013 69.845 OOM 172.219 400.057

Ts 24.202 1.780 0.417 1.486 0.427 44.077 4.411 OOM 3.743 2.448

Auto(0.8)

Tinit 0.003 28.244 132.422 57.520 160.562 0.013 69.873 OOM 171.973 391.956

Ts 33.631 8.282 0.410 7.318 0.449 44.118 8.828 OOM 7.265 2.877

Table 5: Efficiency comparison among memory-unaware approaches and the memory-aware framework. The bold style indi-
cates the best performance and the underline style is the second best performance.
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Figure 8: Sampling efficiency of the memory-aware framework on Twitter and UK200705.

outperforms the rejection method even when the memory

budget is smaller than the minimal memory requirement

of the rejection method. This is because the framework as-

signs some nodes with small degree the naive method, thus

saving memory for other nodes to use the alias method and

improving the overall efficiency. Second, with the increase of

memory budgets, the efficiency of the framework improves

gradually. Taking NV (4, 0.25) on UK200705 as an example,

the improvement is about 19%, i.e., from 3799.02s to 3088.17s,

when memory budget increases from 2Mд to 10Mд . Com-

pared with the results on previous median-size graphs, the

performance improvement of MA framework on billion-edge

graphs is not that significant. The reason is that even when

the memory budget is 10Mд , it is still no more than 0.06%

of the memory required by alias method (e.g., Twitter and

UK200705 need total 1796TB and 379TB for alias method

respectively), and the framework cannot allocate many alias

node samplers, especially for the nodes with large degree.

6.5 Evaluation with Dynamic Memory
Budgets

Here we evaluate the time cost of node sampler assignment

update with dynamic memory budgets. For each dataset,

we synthetically generate a memory budget update trace.

Specifically, given a maximal memory budgetMmax , first the

memory budget linearly increases with the step
Mmax
10

. Once

Mmax is reached, the memory budget decreases linearly with

the same step. The red line in Figure 9 illustrates the trace of

dynamic budget. The blue lines visualize the corresponding

assignment update cost under the different second-order

random walk models. Notice that TCv is excluded since it is

only computed once during the memory budget update.

From the figures, except the first point which initializes

the node sampler assignment from scratch, we see that the as-

signment update cost is small. Taking LiveJournal onAuto(0.2)

as an example, during the increase of memory budget, the

update cost is around 35 seconds, while at the beginning it

needs about 93 seconds. When the memory budget decreases,

it only needs about 7 seconds. According to Section 5.3, the

logic of memory budget decrease is much simpler than the

one of memory budget increase.

In addition, for Blogcatalog and Youtube, when memory

budget increases, we find that there are burst update costs.

For NV(0.25, 4) on Youtube, when memory budget increases

from 20480MB to 23040MB, it takes about 158.047 seconds for

the update. After profiling the data, this is because the frame-

work chooses the node with the maximal degree (28,754) to

use alias method, which entails the heavy initialization cost.
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Figure 9: The update cost of different models with dynamic memory budgets. x-axis is the timestamp of changing memory
budget.
7 RELATEDWORK
7.1 RandomWalk on Graphs
Most existing works about random walk focus on design-

ing new models to improve the accuracy of the applications.

For example, Li et al. [16] introduced rejection-controlled

Metropolis hastings algorithm and generalized maximum-

degree random walk algorithm to improve the accuracy of

graph property estimation. Sengupta et al. [31] uses random

walk to estimate reachability of nodes in a large graph. Be-

sides the first-order random walk, the second-order random

walk is widely applied to model higher-order dependencies

in various domains, including user trails on the Web [40],

global shipping traffic [40], online social networks [7] and

e-mail communications [23]. Boldi et al. [2] proposed a tri-

angular random model to unveil arc-community structure in

the social network, which assigns different weights for the

triangular successors and the non-triangular successors. Wu

et al. [38] studied the effectiveness of various second-order

random walk models on clickstream data.

With regard to the efficiency of random walk-based ap-

plications, a general approach is to reduce the number of

samples to reach the same accurate estimation. Nazi et al. [24]

introduced a walk-estimate framework, which starts with a

much shorter random walk, and then proactively estimates

the sampling probability to fast approximate the target dis-

tribution. Another approach is to reduce the time cost of a

sample generation. Zhou et al. [44] introduced a distributed

second-order random walk algorithm on a Pregel-like graph

computation framework [21] to support large-scale node2vec.

Our work also concentrates on efficiency optimization, but

it emphasizes the performance of generating random walks

in a single server. For the distributed solutions [44] that

are built on Pregel-like graph computation frameworks, our

proposed memory-aware framework can be applied to help

improve the sampling efficiency for each worker. In addition,

our framework can function as a middleware for other appli-

cations which use second-order random walk as a building

block.

7.2 Cost-based Optimization
Cost-based optimization is a classical database technique for

query optimization [4]. It looks at all of the possible ways in

which a query can be executed and each way is assigned a

“cost”, which indicates how efficiently that query can be run.

Then, we pick the execution plan that has the least cost. It

has been extensively used in the relational database, NoSQL,

and various big data processing systems [12, 20, 34].

With regard to the graph systems, cost-based optimization

is also used to improve the efficiency of graph query [11, 43].

In addition, distributed pattern matching uses cost-based

optimization to speed up the external storage access [13].

The memory-aware second-order random walk framework

uses the idea of cost-based optimization to find an efficient

node sampler assignment so that it can generate random

walks fast.

8 CONCLUSION
Second-order random walk becomes an important tool for

modeling higher-order dependencies in data. We studied the

problem of how to efficiently support the second-order ran-

dom walk with various memory budgets in this work. We

proposed a memory-aware framework by developing a cost-

based optimizer. The optimizer assigns different node sam-

plers for each node in the graph and ensures the efficiency

is maximized on a memory budget. We designed an effective

greedy algorithm to generate such high-efficiency assign-

ment. Finally, we empirically evaluated the framework on

four real-world large graphs, and the results clearly demon-

strated the advantages of our memory-aware framework.
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